
AD-A183 437 COMPARISONS OF COMPOSITE SIMPLEX RLGORITHMS(U) STANFORD 1/1UNIV CA SYSTEMS OPTIMIZATION LAB I J LUSTIG JUN 87
S0L-87-S NSSS14-85-K-1343UNCLSSIFIED F/G 12/4 NL

mIhmhhhhmmmhu

IIIIIIIII

lt1.0 111

1.2 LA -

IIJ - Vm.. - .

,r' =. -i~ Ibb 111111.25iil 111 '. I ° i _Ii6

*, OTEC FILEAXE! .

Systems
Optimization

Laboratory

00
'-'

0COMPARISIONS OF COMPOSITE SIMPLEX ALGORITHMS

by
Irvin J. Lustig

TECHNICAL REPORT SOL 87-8

June 1987

DTIC -
AUG 0 5 19871--

Approved toz pul- &c rcl i "-

d \ ~ ~~DistributiOflulir 3

Department of Operations Research
Stanford University
Stanford, CA 94305

C-

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD. CALIFORNIA 943054022

COMPARISlONS OF COMPOSITE SIMPLEX ALGORITHMS

by
Irvin J. Lustig

TECHNICAL REPORT S01 87-8

June 1967

S AUG 05 IV
oD

Research and reproduction of this report were partially supported by the National Science Foundation
Grants DMS-8420623. ECS-8312142. and SES-8518662: U.S. Department of Energy Grant DE-FGO3-
87-ER25028: and the Office of Naval Research Contract N00014-85-K-0343.

Any opinions. finding.. and conclusions or recommendations expressed in this publication are those of
the author(s) and do NOT necessarily reflect the views of the above sponsors

Reproduction in whole or in part is permitted for any purposes of the United States Government This
document has been approved for public release and sale: its distribution is unlimited

2'.

~%(\%~,%.~~%f% /V'.~v/ .. .-- *

N. I . . __ . . I _,

Comparisons of Composite Simplex Algorithms

Accesion~o

DTIC TA 3 [

Irvin J. Lustig Uac,'r.o.,, .1 U
Department of Operations Research :=tt<-., .

Stanford University

By

f_ ! . . .ABSTRACT ot
DTC

For almost forty years, the simplex method has been the method of choice for solving
linear programs. The method consists of first finding a feasible solution to the problem
(Phase I), followed by finding the optimum (Phase II). Many algorithms have been pro-
posed which try to combine the processes embedded in the two-phase process. This study
will compare the merits of some of these composite algorithms.

Theoretical and computational aspects of the Weighted Objective, Self-Dual Paramet-
ric, and Markowitz Criteria algorithms are presented. Different variants of the Self-Dual
methods are discussed.

A large amount of computational experience for each algorithm is presented. These
results are used to compare the algorithms in various ways. The implementations of each
algorithm are also discussed. One theme that is present throughout all of the computational
experience is that there is no one algorithm which is the best algorithm for all problems.

i-i

Table of Contents

Table of Contents

Section 1. Introduction I

Section 2. The Linear Programnmng Problem. 2
2.1 The MINOS Standard Form.. 2
2.2 A Generic Simplex Method. 3
2.3 An Outline of MINOS 3
2.4 The "~MinSumInf" Ratio Test. 6
2.5 Composite Simplex Algorithms 7

Section 3. Computational Testing Methodology. 8
3.1 Practical Experience with the Simplex Method 8
3.2 The Crash Basis. 9
3.3 Scaling. 10
3.4 Tolerances. 11
3.5 Pricing. 12
3.6 Random versus Real-World Problems 13
3.7 Testing Methodology. 15
3.8 Results for the Primal Simplex Algorithm. 16

Section 4. The Weighted Objective Method 19
4.1 The Weighted Objective Method: Algorithm. 19
4.2 The Big-M Method. 20
4.3 Absolute Value Penalty Methods 21
4.4 Implementation and Computational Result 21

Section 5. The Markowitz Criterion. 26
5.1 The Markowitz Criterion: Algorithm. 26
5.2 Implementation and Computational Results. 28

Section 6. The Self-Dual Parametric Algorithm 32
6.1 Dantzig's Self-Dual Parametric Algorithm. 32
6.2 Implementation and Computational Results. 35

Section 7. Variants of the Self-Dual Parametric Algorithm. 41
7.1 Normalized Covering Vectors 41
7.2 Fixed Variables. 48

Section 8. Summary and Comparisons of Results. 56
8.1 Comparing Many Algorithms 56
8.2 Sensitivity Analysis 59
8.3 Summary and Further Research 61
8.4 Acknowledgements 61

Section 9. Bibliography. 2

List of Tables and Figures

List of Tables 4nd Figures

Figure 2.1 The function S(8) 7
Table 3.1 Results for HITACHI problem13
Table 3.2 Problem Statistics15
Table 3.3 Two-Phase Algorithm-Comparison of Scaling versus Nonscaling 16
Table 3.4 Two-Phase Algorithm-Unscaled with UB Basis17
Table 3.5 Two-Phase Algorithm-Scaled with UB Basis17
Table 3.6 Two-Phase Algorithm- Unscaled with SB Basis 18
Table 3.7 Two-Phase Algorithm-Scaled with SB Basis18
Table 4.1 Weighted Objective Algorithm-Unscaled with UB Basis23
Table 4.2 Weighted Objective Algorithm-Scaled with UB Basis 23
Table 4.3 Weighted Objective Algorithm-Unscaled with SB Basis24
Table 4.4 Weighted Objective Algorithm-Scaled with SB Basis24
Table 4.5 Weighted Objective Algorithm-Comparison of Scaling versus Nonscaling 25
Table 4.6 Weighted Objective Algorithm-Comparison to Two-Phase Algorithm . 25
Table 5.1 Markowitz Criterion- Unscaled with UB Basis29
Table 5.2 Markowitz Criterion -Scaled with UB Basis29
Table 5.3 Markowitz Criterion -Unscaled with SB Basis 30
Table 5.4 Markowitz Criterion-Scaled with SB Basis 30
Table 5.5 Markowitz Criterion-Comparison of Scaling versus Nonscaling 31
Table 5.6 Markowitz Criterion-Comparison to Two-Phase Algorithm 31

Table 6.4.1 Self-Dual Algorithm-Unscaled with UB Basis38
Table 6.4.2 Self-Dual Algorithm-Scaled with UB Basis38
Table 6.4.3 Self-Dual Algorithm-Unscaled with SB Basis39
Table 6.4.4 Self-Dual Algorithm-Scaled with SB Basis 39
Table 6.4.5 Self-Dual Algorithm-Comparison of Scaling versus Nonscaling . . . 40
Table 6.4.6 Self-Dual Algorithm-Comparison to Two- hase Algorithm 40
Table 7.1.1 Self-Dual Algorithm Normalized Variant-Unscaled with UB Basis . 46
Table 7.1.2 Self-Dual Algorithm Normalized Variant-Scaled with UB Basis 46
Table 7.1.3 Self-Dual Algorithm Normalized Variant- Unscaled with SB Basis 47
Table 7.1.4 Self-Dual Algorithm Normalized Variant-Scaled with SB Basis 47
Table 7.1.5 Self-Dual Algorithm Normalized Variant-

Comparison of Scaling versus Nonscaling48
Table 7 1.6 Self-Dual Algorithm Normalized Variant-

Comparison to Two-Phase Algorithm 48
fable 7.1.7 Self-Dual Algorithm Normalized Variant-

Comparison to Self-Dual Algorithm 4S
Table 7 2.1 Self- Dual Algorithm Fixed Variable Variant l'nscaled with UB Basis . .50
I able 7.2 2 Self- Dual Algorithm Fixed Variable Variant -Scaled with UB Basis .50
Fable 7 2.3 Self-Dual Algorithm Fixed Variable Variant l'nscaled with SB Basis 51
Fable 7 2 4 Self -Dual Algorithm Fixed Variable Variant Scaled with SB Basis 5 1
lat e 7 2.5 Self- Dual Algorithm Fixed Variable Normalized -

t'nscaled with UB| Basis .. . 2
Table 7 2,6 Self Dual Algorithm Fixed Variable Normalized Scaled with UB lBasis 52
1 able 7 2 7 Self l)ual Algorithm Fixed Variable Normalized U'nscaled with SB Basis 51
I able 7 2 S Self l)ual Algorithm Fixed Variable Normalized Scaled with SB Basis 5iI
I atdr 72,' Self)iial Algorithm Fi xed Variable Variant

Comparison of Scaling versus Ntinscaling
IbI. 7 .. 1t Self l)ual Algorithi Fixed Variable Normalized

'omparison of Saling versus Nonscaling 5.1

I',

List of Tables and Fiures

Table 7.2.11 Self-Dual Algorithm Fixed Variable Variant-
Comparison to Two-Phae Algorithm54

Table 7.2.12 Self-Dual Algorithm Fixed Variable Normalized-
Comparison to Two-Phse Algorithm54

Table 7.2.13 Self-Dual Algorithm Fixed Variable Variant-
Comparison to Self-Dus Algorithm55

Table 7.2.14 Self-Dual Algorithm Fixed Variable Normalized-
Comparison to Normalized Self-Dual Algorithm 55

Table 8.1.1 Performance Factors for Iteration Counts 57
Table 8.1.2 Performance Factors for CPU Times58
Table 8.2.1 Sensitivity Analysis Results59

Figure 8.2.2 CPU Times for Sensitivity Analysis60

V

v . .

Section 1 Introduction 1

Section 1. Introduction

Since the simplex method was discovered by Dantzig in 1947, it has remained the
method of choice for solving linear programs. It is used every day by people from many
different fields and in many different applications. While other methods have been pro-
posed in the past for solving linear programs, none were shown to perform consistently
as well as the simplex method (see, for example, Hoffman, et.al., 1953). Recently, how-
ever, new methods have been proposed based on Karmarkar's (1984) discovery of a new
polynomial-time algorithm for linear programming, and they are posing serious challenge.
In comparing the performance of these algorithms with the simplex method, there is an
implicit assumption that the simplex method is an explicit algorithm, whereas, in practice,
there are many variants. The purpose of this study is to compare the variants to see if any
one variant can be said to be the best in some sense and could be used as a standard for
comparison with non-simplex algorithms.

While many variants of the simplex method have been proposed, systematic studies
of their effectiveness have not appeared in the scientific literature. This study is limited
to a certain class of variants of the simplex method, called composite simplex algorithms.
This report contains computational comparisons of some composite simplex algorithms,
and emphasis is placed on making the computational experiments replicable by other
researchers.

Section 2 defines the class of composite simplex algorithms and describes a generic
simplex algorithm and a framework whereby all the composite simplex algorithms are
implemented. Section 3 discusses the various options that are available when one solves a
linear program on a computer. The influence of these options must be understood when
making computational comparisons of variants of the simplex method. The results for the
standard two-phase algorithm are presented here.

Section 4 discusses the weighted objective algorithm. Section 5 analyzes the Markowitz
Criterion. In Section 6, Dantzig's self-dual parametric algorithm is presented. Some vari-
ants of the self-dual algorithm are presented in Section 7. In Section 8, the computational
results are analyzed and suggestions for further research are offered.

The following general inferences can be drawn from the very extensive systematic
trials made in this study:

1. Almost every variant performed remarkably well on some problems and very poorly
on others.

2. No variant stood out clearly as the best on all problems.

-- ... :c7..

2 Section 2. The Linear Programming Problem

Section 2. The Linear Programming Problem

In this section, the general linear programming problem is discussed. A "generic"
simplex method will be described in a way that serves as a framework for describing various
variants. The mathematical programming system MINOS (Murtagh and Saunders, 1983),
suitably modified, was used in the experiments on test examples in this study. A description
of how MINOS solves linear programs is therefore given. Finally, the "MinSumlnf" ratio
test is discussed as an alternative ratio test which can be used in some methods.

2.1 The MINOS Standard Form

A linear program can be described as the minimization or maximization of a linear form
z = cTx over a linear constraint set. Each of the constraints in this set may be an equality
or an inequality constraint. After a linear program is formulated mathematically and
numerical values assigned to its coefficients and right-hand side, these values are placed in
an input file in a prescribed format in order for a computer to solve it. Once the data is
read into the computer, the next step is to translate it into an equivalent form for internal
use by the computer program. An algorithm is then used to solve the linear program. In
the case of MINOS, the form

minimize cTx

subject to [A I]x = 0, (2.1)
l<z<u.

is termed the The MINOS Standard Form.
To maximize z, the user can minimize -z and obtain the same optimal solution x.

Henceforth, it is not restrictive to assume that the objective function is being minimized.
The number of variables is denoted by n, and the solution is then given by some z E R ".
Each variable zi, j = 1, ... , n is termed a decision variable and can have a lower bound
Ij and an upper bound uj. Some of these bounds may be -oo and/or +0o, respectively.

The number of constraints in the problem is denoted by m. Each constraint is de-
. scribed by a vector ai E R" and two scalars, bi and ri. In the MINOS manual (Murtagh

and Saunders, 1983), b, is termed the right-hand side and ri is termed the range. The ith
constraint is then

ib+ri<aTx<bi if ri<0,
bi < a'z < bi + ri if ri > 0.

Note that if r, = 0, the constraint is of the form aTx = bi; if ri = +0o, the constraint is
of the form aTz b,; if r, = -oo, the constraint is of the form aT: < b,. Given these m
constraints, m slack variables, zj, j = n + 1, ... , n + m, can be added to transform each
of the constraints into equality constraints. This is done by setting x,+, = -aT:, i = 1,
... , m, and placing lower and upper bounds on x,+, that were previously on aTx. Hence
the linear program has been converted to the form (2.1). Now z E R"+- and there is no
need to treat differently the slack variables and the decision variables of the problem, since
each xj is considered as a column of the large matrix [A I] with a cost coefficient c, and
lower and upper bounds 1, and u3 .

S . m e' -' . ' - . -- ' dm. l £ ,.d d ~ m . -
'

" - - - ,. - " - ' , " , • : " - " - " - """'. "'

Section 2.3 An Outline of MINOS 3

2.2 A Generic Simplex Method
The simplex algorithm as described by Dantzig (1963) (and in earlier references) is ap-
plicable to linear programs that have an initial primal feasible basis. In order to find an
initial basis, a "Phase I" procedure was devised. This procedure sets up a linear program
which could be solved by the simplex algorithm, and which yields a primal feasible basis
or a verification that the problem is infeasible. If the problem was feasible, the simplex
algorithm could be used again to find an optimal solution ("Phase II"). The combination of
first finding a primal feasible basis by the simplex algorithm and then finding the optimal
solution by the same algorithm is collectively known as the simplex method. This fine
distinction is made here to clarify the differences between the simplex algorithm and the
simplex method.

Since 1947 when Dantzig proposed the simplex algorithm, many variants of the method
and algorithm have been proposed. Some of these variants are listed in Dantzig's book
(1963). These variants have a common framework, which can be described by the following
proto-algorithm:

Comment Let B be a basis for [A I].
while not optimal(B) do

begin
gs, q} +- indices of { incoming -column, eziting -column};
omment Column q of [A I] is the same as column r of B.

pivot(B, s, q, r);
end

The boolean function optimal(B) returns true if B is both a primal and dual feasible
basis. The procedure pivot(B,s,q,r) assumes that xq is the rth basic variable. Column
s of [A 1] replaces the rth column in the basis, which is the same as column q of [A I].
This procedure usually updates a factorization of the basis B. The order of execution
of the functions incoming-column and exiting-column determines which simplex variant
is being executed. In the case of the primal simplex algorithm, the steps (called pricing
out) for deciding which column is to be the incoming-column are executed before the steps
(a primal ratio test) for deciding which is to be the exiting-column. In the case of the
dual simplex algorithm, finding the exiting.column (determining the basic variable with
the most infeasibility) is done before finding the incoming-column (a dual ratio test). As
will be seen later, some algorithms may change the order of the two processes depending
on the status of the current iteration. Furthermore, the actual algorithms that define the
functions incoming-column and exiting-column may change as iterations progress.

2.3 An Outline of MINOS
In order to understand the implementations of the various algorithms studied in this study,
it is necessary to understand the subroutines that MINOS uses to solve linear programs.
For ease of discussion, the names that were given to subroutines in MINOS have been
changed to a mnemonic that reminds the reader of the subroutine's purpose. After read-
ing in the problem specification and converting the problem to MINOS standard form
(subroutine input), a starting basis is determined. A basis is easily obtained from the
matrix [A I] by choosing the slack variables. As discussed in Section 3, it is usually more
efficient to determine an initial "crash" basis to begin the simplex method (subroutine
crash). Each nonbasic variable is initially set to be equal to one of its bounds. 8 denotes
the index set {j,,j2 .. . ,Jm I of the basis. The order of the basic columns is important and
is indicated by an integer vector 1,, i = 1, ... , m where B, = j indicates that x s is the
Ith basic variable. Given the initial basis and the initial states of the nonbasic variables,
MINOS executes the following loop until termination:

V..

4 Section 2. The Linear Programming Problem

procedure prinmalsimplez;
finuhed 4- false;
while not finuled do

begin
if needa.fatorization(B) then factorize(B);
if infeasible.basis(B) then 6 - d else 6 + c;

FindPI: Solve rTB = 4 for r;

PriceOut: Find a such that x. has minimum reduced cost e.;

optimal 4-- . > 0
i not optimal then

Represent: Solve Bp = [A I]. for p;

RatioTest: Find r such that x, blocks the change in zX;

unbounded +- r = 0
if not unbounded then

begin
q +- Br;
IUpdate: Update value of x;

pivot(B, a, q, r);
end;

end;
infeasible +- infeasible.-basis(B) and optimaUl
finished +- optimal or unbounded or infeasible;
end;

The boolean function needs factorization(B) is true if the basis needs to be refac-
torized. A number of circumstances can contribute to this condition. MINOS has a
FACTORIZE FREQUENCY option, which determines the maximum number of updates to B
that can be done before refactorizing the basis. This number defaults to 50. MINOS will
also refactorize the basis if the size of the current factorization has increased significantly,
or if there is insufficient storage to update the factors. Because of the modular nature of
the MINOS code, the conditions influencing refactorization are external to the variants of
the simplex method that are being considered. Furthermore, the subroutine factorize(B)
and the routines that solve the equations 7rTB = c and B: = b can be treated as a pack-
age; the results of using this package do not influence the paths generated by the different
variants of the simplex method. MINOS uses a sparse LU factorization of the basis. The
implementation is sufficiently modularized that the factorization and solve routines can be
replaced by some other equivalent scheme of maintaining the factorization of the basis, if
so desired.

The boolean function infeasible-basis(B) is true if the current basic solution indicated
by B is primal infeasible. The vector d E R" "' is defined element by element as

I if X, > uj;
d= -1 if z,<lj;

0 otherwise

and represents the Phase I cost form used when the problem is infeasible. Note that if x)
is nonbasic, then dj = 0, since each nonbasic variable is always equal to one of its bounds.

% . .,. .- -.-....-- :. -.......................,....

Section 2.3 An Outline of MINOS 5

The Phase I objective vector d changes on each iteration, depending on which variables are
infeasible. Once a variable is feasible, the ratio test prevents the variable from becoming
infeasible. The objective in Phase I never increases since MINOS chooses incoming vari-
ables based on the cost form w = dTx. However, because the sum of infeasibility changes as
a function of the incoming variable, it is possible for this sum to increase. MINOS always
insures that if the sum does increase, the number of infeasibilities will decrease, which is
enough to prove convergence.

After determining the objective to minimize and solving for prices 7r, MINOS chooses
an incoming variable x, by computing the reduced costs of the nonbasic variables and
picking the variable with the minimum reduced cost. The reduced cost ei is defined for x.
nonbasic as

ej - 7rT [A I].j if x~i = l.i; ,- -(. -rT [AI].i) ifz xj =u .

It should be noted that MINOS does not save the values of the reduced costs as they are
computed, since these values are only needed to determine the index s of the incoming
variable. This facilitates the use of partial pricing schemes, which are discussed in Section
3.

The next step in the simplex method is a ratio test. In order to do this, a direction
vector for modifying the current solution x is determined by solving the equation Bp = .
[A I].,. The vector p is the representation of the incoming column in terms of the basis B.
The components of x except for x. and x, are not changed. The dimension of the vector
of basic variables x. is expanded by one to include xs, so that i = (x. , x,. The direction
of change ofi is P= (p, t), where t = 1 ifxo = us and t = -1 if x, = ?3 . To make the
ratio test easier to implement, let 6m+l = s. The ratio test determines the maximum 9
such that i - Op is feasible. Specifically,

{ I ,,* if 3>O0;
9 min /i.,

i=1 '.....M+ u , -_i if A <0;-p-[
Given 9, the value of the basic variables can be changed using the formula ,r. x, - 9)3.
If f, is the blocking variable, then 8 , and Bm+ are interchanged as well as ir and i_,.
If r = m + 1, then the variable x, has moved from one of its bounds to the opposite bound,
and no update of the basis is necessary.

I
S

S

..

6 Section 2. The Linear Programming Problem

2.4 The "MinSumlnf" Ratio Test

The standard ratio test described above has computational complexity O(m). As an
alternative to this ratio test in Phase I, Greenberg (1978) described a primal ratio test
which has come to be known as the "Dennis Rarick ratio test, since he implemented it in
WHIZARD (see MPS-III (1975)). Wolfe (1961) described this ratio test as an "extended
composite algorithm," but his use of the word "composite" has a different meaning than
that defined in the next section. Because of the lack of suitable references, it is not clear
from the literature whether Rarick or Greenberg were aware of Wolfe's earlier work.

It is easy to prove that the function measuring the sum of the infeasibilities of the
current basic variables over the range of the incoming basic variable z is convex. The key
idea behind the ratio test is to choose the outgoing variable associated with the value of x,
that minimizes this function. Without loss of generality, we may assume (by translating
the variables and reversing sign, if necessary) that all the variables have lower bounds I = 0
and upper bounds u = +oo. Unrestricted variables with infinite lower and upper bounds
are ignored. After selecting the incoming variable z, and finding the representation p of
the incoming column, the value of z is increased from 0 to some value 0 while the values of
the basic variables x,, i = 1, ... , m are changed according to the formula x., +- x, -Op.

To simplify the notation, let /li = x.,, and ai = pi. For 0 > 0, the function which
computes the sum of the infeasibility of the basic variables can be written as

m

S(O) = -Z min(0,6i - Oa).

As a function of 0, this function is piecewise linear and convex. An example is shown
in Figure 2.1. The function has breakpoints t, = /fi/ai where the slope wi(O) = S(9)
changes. The "MinSumInf" ratio test searches for the ratio tI that minimizes S(0). Let
wi" be the left derivative and wt be the right derivative at ti. Note that wt = w- for
i = 1,..., m - 1. Since S(O) is convex, w7 < wt. The minimum of the function occurs at
0 = ti where w- < 0 and wt > 0. If both ti and ti+ tie for the minimum, ti is selected.

Greenberg's algorithm to minimize S(0) involves sorting the sequence ti. Under a sim-
ple computational model, it can be shown that at least O(n log n) comparisons are needed
to sort this sequence (Aho, Hopcroft, and Ullman, 1974). However, the methodology of
Megiddo (1983), who found a linear-time algorithm to solve linear programs when n = 2,
can be used in the "MinSumInf" ratio test in order to develop a linear-time algorithm to
find the ti that minimizes S(O). The latter, however is difficult to implement, and is only
applicable to a two-phase method. For these reasons, this ratio test was not considered in
this study.

\-r.-~

Section 2.5 Composite Simplex Algorithms 7

Sum of
infeasibility

"i S(O)

I I
S I
I II

S I

I S

tl t 2 t 3 0

Figure 2.1 The function S(O)

2.5 Composite Simplex Algorithms
In most mathematical programming systems today, the simplex method is used with the
Phase I/Phase II procedure described earlier. Ordinarily, the Phase I linear program has
multiple optimal solutions, since every feasible solution for the original linear program is
optimal in Phase I. This fact would lead one to believe that the Phase II procedure could
begin at a vertex very far away from the optimal vertex. This was observed early on by
many who worked on the development of the simplex method; these investigators invented
numerous composite simplex algorithms which combine in various ways the reduction of
primal and dual infeasibility, until zero is achieved for both. Essentially, these composite
algorithms try to use information about the objective function cTx while finding an initial
feasible point.

Finding an optimal solution of the primal linear program involves among other things
finding a feasible solution to the dual linear program. As most of the methods progress, the
primal and dual systems play a game of "Tug-of-War." At any primal infeasible point, it is
impossible to know whether the current objective value is below (superoptimal) or above
(suboptimal) its optimal value. If the point is suboptimal, an improvement can often be
made which will simultaneously reduce the amount of infeasibility and decrease the value
of an objective function (perhaps going below the optimal value of the objective). At a
superoptimal point, a reduction in ' :e amount of infeasibility often can only be made by
increasing the value of the objectix(function. However, some superoptimal points have
adjacent vertices which can reduce infeasibility and improve the value of the objective
function. At such a point, movement to such an adjacent vertex looks promising, but one
is deceived by the local improvement criterion of the simplex method. In this case, the
adjacent vertex is improving the value of the primal objective function while increasing
the amount of dual infeasibility. It is in this sense that we say that the primal and
dual feasibility conditions are "tugging" at each other. The various composite algorithms
attempt to act as the referee between trying to satisfy the competing primal and dual
feasibility conditions.

-.. ,, -,,,.-,-,

8~~~- Section~im 3.A C puaioa TesingMetodoog

8Section 3. Computational Testing Methodology

In the course of making computational comparisons of various variants of the simplex
method, it is important to recognize that many factors can contribute to the overall perfor-
mance. MINOS allows the user to select from a number of options, and the ones used must
be carefully chosen. In this section, these options and their effects on the computational
testing are discussed. In order to reduce the amount of variability in performance due
to the options chosen, the options used were fixed in such a way as not to influence the
performance of any specific algorithm at the expense of another competing algorithm. In
this section, previous studies on computational testing of the simplex algorithm are also
discussed.

3.1 Practical Experience with the Simplex Method
The question of just how efficient the simplex method is has existed since its proposal
in 1947. Interestingly enough, in spite of the long interest in its efficiency, the amount
of serious scientific testing of the algorithm appears to be quite small. Shamir (1986)
provides an excellent summary of results that have appeared in the literature pertaining
to the performance of the simplex method; the interested reader should refer to his work
for references. Shamir states:

"The experience accumulated during the last three decades on the behavior of
the Simplex Method is undoubtedly vast. However, there is surprisingly little
documented evidence on this experience in the scientific literature. One prosaic
explanation may be that practitioners usually do not keep record of parameters of
the solution process for the problems they solve (since they are interested mainly
in the result) and if they do they seldom report on this record in the scientific
literature."

With regard to many composite simplex algorithms that have been proposed, no systematic
study seems to exist in the scientific literature of their efficiencies.

The earliest experiments with the simplex method were performed by Hoffman, Man-
nos, Sokolowsky, and Wigmann in 1953. At the time, they were comparing the simplex
method to other non-simplex methods for solving linear programs; they found the simplex
method to be superior. Dantzig has remarked that their work provided the impetus to
perfect the simplex method. If their results had not been favorable, it is possible that
other methods would have been perfected and the simplex method would not be in use
today!

In 1963, Wolfe and Cutler experimented with nine "real" linear programming prob-
lems, which were submitted to them by practitioners of linear programming at the time.
They compared different pivoting rules for the simplex method; their conclusion was that
the original 'most negative reduced cost' rule, in spite of the fact that it is dependent
on the scaling of the variable, did as well as the other alternatives. It may be one of
the reasons why it is used in most codes today. The most-negative reduced cost rule has
its origins in problems with a convexity constraint. In such problems, an argument can
be made for choosing this rule. Why it appears to work well in practice without such
a constraint is a mystery and may be due to practitioners choosing units for competing
activities consistently (See Dantzig (1987) for further discussion). Since the Wolfe-Cutler
study, no serious computational comparisons of simplex variants on real-world problems
have appeared in the scientific literature.

In contrast to using "real" problems for testing, there has been much work done
using randomly generated problems. In the early sixties, Kuhn and Quandt (1962) were

*. -. 7

Section 3.2 The Crash Basis 9

the first to conduct a series of experiments comparing the performance of many different
pivoting rules on randomly generated problems. Other authors followed with different
experiments, usually changing some aspect of the probabilistic model. Because of the
stochastic nature of these experiments, the statistics computed can give some insight on
the average performance of different variants. But, as discussed later, it is not clear that the
performance of the simplex method on such problems is representative of the performance
of the simplex method on the variety of real-world problems that are solved every day by
linear programming practitioners.

3.2 The Crash Basis
Like most linear programming systems, MINOS provides the option of finding a crash basis
as the initial basis to start up the simplex method. The key idea is to rearrange the order
of the rows and then select a lower triangular basis using columns from the original input
matrix A. It should be noted that columns from the slack variables can always be used
to keep the initial basis lower triangular. In fact, if A were totally dense, then only one
column would be chosen from A, with the rest of the columns being chosen from the slack
variable matrix I. MINOS also selects columns so that each diagonal element of the crash
basis is reasonably large relative to the other elements in the same column, in order to
prevent the initial basis from being ill-conditioned.

There seem to be some good reasons to begin with a crash basis, as opposed to the
basis consisting entirely of slack variables. To understand these reasons, the concept of
Hamming distance is useful. Let J, and J2 be two sets of indices of basic variables. Then
the Hamming distance is defined as

h(Ji, J2) = 1.1 u J2 1 - lJJi nJ 21.

In other words, h(J1 , J12) is the minimal number of pivot steps (ignoring feasibility) required
to move from the basis corresponding to J, to the basis corresponding to J2. It provides
a useful lower bound on how close a specific basis is to another basis, in terms of number
of pivots of the simplex method.

In most linear programs, the number n of original columns is larger than the number
mn of rows. Hence, if all variables (decision and slack) have equal probability of being in
a specific basis 13, the probability of the ith basic variable in the basis 13 being a decision
variable (as opposed to a slack variable) is n > 2. Hence, the expected number of
decision variables in the optimal basis should be larger than the expected number of slack
variables in the optimal basis. Therefore, choosing a crash basis from the set of original
decision variables should keep the initial Hamming distance between the crash basis and
the optimal basis lower.

On the other hand, if we consider the probability of a certain variable x, being in
the optimal basis, with all bases being equally likely, a different analysis is required. Since
there are (l7)possible bases, and (n~)bases which do not include .r1 the probabilitv
of X3 not being in a random basis is Hence, the likelihood of x~ being in a randonfly
chosen basis is m < 1 So choosing a specific x, to be in the crash basis niav be

nm 2'
disadvantageous.

However, many slack variables correspond to equality rows, and therefore cannot
be in the optimal basis unless redundancies among the constraints exist, or in certain
degenerate situations. Furthermore, in formulating linear programs. there is a tenidency
to write inequality constraints, a good proportion of which are expected to be tight at
the optimal solution so that their corresponding slack variable will most likely not he in

10 Section 3. Computational Testing Methodology

the optimal basis. On the other hand, if the problem has many constraints which are not
binding in the optimal solution, then the optimal basis may contain more slack variables
than decision variables. In most problems, the former seems to be the case. With these
considerations, all the experiments in this dissertation were done using the CRASH BASIS
option of MINOS to initiate the various algorithms.

3.3 Scaling

MINOS offers a SCALE option when solving a linear program. This option will take the
original input of the problem and attempt to make the coefficients of each column and row
as close to 1 as possible. This is done by choosing two nonsingular diagonal matrices R and
S to respectively multiply the rows and columns of the problem. The values of the elements
of A, c, 1, and u are modified. The algorithm used in MINOS is described by Fourer (1982).
The most immediate advantage of using the SCALE option is in controlling any numerical
difficulties that may occur in a specific problem. Scaling is theoretically attractive because
it makes certain selection rules scale free. Appealing as it is on theoretical grounds to be
scale free, nevertheless, it is not clear how scaling affects the performance of the simplex
algorithm or its variants. This is apparent from the computational results in this study.

Badly scaled linear programs seem to be an evil that those who develop software to
solve practical problems must contend with. Quite often practical models contain con-
straints that implicitly must convert the units used in one constraint to the units used
in another. For example, if z, is a variable whose unit is millions of dollars, and 12 is a
variable whose unit is dollars, then a constraint that adds zi and X2 would be similar to

z1 + 106X2 5 10.

It is clear that such constraints can cause bad problems with regard to numerical accuracy.
Scaling often helps remove some of these effects.

It is easy to see that scaling a problem can change the path of the simplex algorithm. If
a columnj is multiplied by p, then the reduced cost of that column will be pc,. Therefore.
the choice of incoming column used by the 'most negative reduced cost rule' could change
if the units of a variable were changed by the user at the time of formulating his linear
program.

The scaling algorithm is executed before a crash basis is determined. Scaling, of
course, does not affect the sparsity pattern of a linear program. Because the numerical
values in the constraint matrix A influence the choice of columns for the crash basis, scaling
can change the starting basis and therefore comparing the results of solving with the SCALE
YES option with the results of solving with the SCALE No option will not isolate the effects
of scaling alone. If the two crash bases generated are labeled as the -unscaled basis- and
the "scaled basis," these bases can be used as either the starting basis for either the scaled
or unscaled, problem, respectively. Hence. for a specific problem and a specific algorithm.
four variations can be considered, and the experience gained from running each algorit hil
under all of the variations can be used to compare the effects of scaling by remov.ing any
variability in the different starting bases. For notational convenience, the unscaled crash
basis willbe notated as UB an the scaled crash basis will be notated as SB In all
problems except AFIRO, these bases were different.

In order to generate the scaled basis for the unscaled problem and the unscaled basis for
the scaled problem, the two initial bases for each problem were saved using the PUNCH optilon
of MINOS. When each problem was solved, the scale option was set in the specitications,
file, and the appropriate crash basis was read in using the INSERT option \When the UB
basis was used with the unscaled problem, and the SB basis with the saled prohlei,

% %.

Section 3.4 Tolerances 1

the bases were not read in from their files, but were generated by the code at runtime.
As explained later, the extra CPU time for these extra computations was recorded and
adjustments made to correct the running time statistics generated by the experiments.

3.4 Tolerances

If a linear program is solved using rational arithmetic, the solution will satisfy the equations
[A I] = 0 and I < z < u exactly. Furthermore, the conditions for optimality of the
nonbasic variables e > 0 will also hold. However, MINOS uses floating-point arithmetic,
and it is not practical to obtain exact solutions to the primal and dual systems. It is
necessary, therefore, to specify tolerances for infeasibility of the problem.

MINOS provides a FEASIBILITY TOLERANCE option. If t! is this tolerance, then a
solution z is said to be feasible if

I) - t1 < z3 <_ u) + t/

for each j = 1, ... , m + n. Since these equations include the slack variables, the linear
constraints are also satisfied to this tolerance t. For MINOS, the default feasibility tol-
erance is t1 = 10-6. For all of the experiments done, the default feasibility tolerance was
used.

A second tolerance is the OPTIKALITY TOLERANCE. This is related to the dual feasibility
of the problem. If td is this tolerance, then the solution is declared optimal if

C) >

(To av, I division by zero, the value in the denominator is actually max(l. D)i) I)viding
by th, torm of v makes the test independent of any scaling of the objective function The
defa, value of the optimality tolerance is td = 10-6. This value was used in all the
computational tests.

The third tolerance that is important when solving linear programs is the PIVOT
TOLERANCE. This tolerance is used to prevent columns from entering the basis if the
would cause the basis to become almost singular If this tolerance is denoted t.. then a
row i in the ratio test will be rejected if

i <- t

I'he default pivot tolerance for MINOS is tP = # 2 /3 and was used throughout all the I!tlng
hfere o is the measure of machine precision, t. was approxiiiiatek IWi- o1 n the iniamh,'
ui sedJ in the experiments.

In order to maintain the "equalit.\' of the linear rowistraints .4 I 1 (I. a Mionrir, al

test is done on every kth iteratlion, where k i, the CHECK FREQUENCY If tht, largest ,,,m
porient of the residual vector r = .4 I/., is determined to he to, large, ia d'erlc ni., h,%
tf and Irlz . a larger error is allowed if I i s large i, then the hasis is refa t,,rized an,! ih,
hasi, variables are recomputed hv a spe al aIgt)ri t I iti sat isf t hi linear ,rit raii , !t ,,ir,.
a,-,(iratelv The default value of 4- - W was Used i ali t. t- in lhis i,,%ertation Ii ,'ai ii
te't. ?hf. check never auised a refa t(,iritatih

.s..

12 Section 3. Computational Testing Methodology

3.5 Puci,,s

In determining a variable z. to enter the basis, the simplex algorithm chooses s such that
e. is minimal. Since e is not needed elsewhere in the execution of the algorithm, it is
efficient to compute e) for each nonbasic z for j - 1, ... , n + m, while keeping track
of the minimum e) found so far. This comlined procedure is known as pricing out the
nonbasic variables. The fundamental calculation is to compute

9, = ci - r TA I1.,

for each column. If z) = 1), then C = g.; otherwise, z, = u) and e, = -g" If c) _ 0 for
all J, then the current solution to the linear program is optimal.

The expense of pricing a specific column is directly related to the density of that
column. If z) is a slack variable, then g. = -xj. If the J 6 column in A has k) nonzero
elements, then only k, multiplications are needed to compute g.. To actually compute s
such that e. is minimal requires one to price out a the columns of A. For convergence of
the simplex algorithm, any . will do provided e, < 0 on each iteration. It has been observed
empirically that sweeping through the j = (1,... , n) in batches and optimizing over each
batch can reduce CPU time dramatically in many applications. Hence, this scheme, called
partiaJ pricing, is used in most commercial linear programming systems. In particular. the
PARTIAL PRICE option of MINOS allows the user to specify a value p so that the m + it
columns for the decision and slack variables are divided equally into p batches, A and I,
for k = 0, ... , p - 1. A tolerance parameter, i > td, is set for each sweep through each
group, and it is reduced dynamically on each iteration. If the previous iteration found an
X, such that e, < 0 for some) in the hts group, then the next group searched is A,+j.
I,+, (When k + I = p, then the next group searched is A0 , 1o). If no j is found in this
group such that (e4/lrII) < -id, then the next group (k + 2) (with provisions for recycling
back to zero) is searched. If all groups are searched and no candidate is found, td > td is

reduced, unless it is already as small as tf, in which case the current solution to the linear
program is declared optimal.

The partial pricing scheme described above will most likely reduce the amount of
pricing out and hence the average amount of com putation done per iteration, but may
increase the number of iterations necessary to find the optimal solution, because the -best
candidate" (in terms of minimal c,) may not always be chosen on each iteration [here
is. therefore, a tradeoff that the user of a linear programming system must make. and it
is not clear what rule one should use to choose the value of p. In the MINOS manual. i
is recommended that for time-stage models with t time periods, the user should choost.
p = t The example below shows that this may not always be optimal

The problem HITACHI was described as a 48-period model by Nishiva and Furnabashi
(1984). Brady (1986) wrote a program and used it to generate an MPS deck for this model
MINOS 5.0 was then used to solve this problem on an IBM :1081 usinit dlfferenit partial
price options. The size of the problem was quite large. with m = 1 00$. it = 1632 arid(.1 7 1
nonzero elements in A. All the options of MINOS were set to their default mode .x(,
the PARTIAL PRICE option, which was varied from p = I to p = VT he results at,' ho ,
in '[able 3.1.

It is interesting to note that as p increased fron I to S. the nurriber of Il.-ratiis dl,,
the total ('P" time decreased For p > t, both iterations and ('P1 tim-,e r.eased w0 Z,
except for p = 16. The outlyer at p = 16 indicates that it is difficult ti, predi, t the r,-lt- "
of var ing p. It is also interesting to note that while 1A1.111 has 4N tunc per,,k 7 P
was not the best choice

Section 3.6 Random venus Real-World ProbJem. 13

Partial Price Number of 1U Time

1 790 24.07

2 791 21.10
4 781 19.72
6 781 19.32
8 770 18.77
12 807 19.17
16 799 18.93
24 822 19.45
48 879 20.47

Table 3.1 Results for HITACHI problem

This example demonstrates (and this is true for many others) that how to choose p to
minimize the running time of solving a linear program is not obvious. Hence, for all other
results in this study, the PARTIAL PRICE option of MINOS was not used, and the default
choice of p = I was set by the program. In later sections, there will be discussion on howpartial pricing could possibly be used to reduce the running time of different algorithms
implemented herein.

3.6 Random versus Real-World Problems
When comparing algorithms for linear programming, it is necessary to determine whether
randomized or real-world problems will be used. Up to now, no one has been able to
create a random model that generates problems that are representative and as varied as
those encountered in practice. A number of characteristics seem to be inherent in real-
world problems, but are difficult to capture and model stochastically. We can, however.
comment about some of their properties.

I Sparsiry Most real-world problems are sparse. Typically. they are sparse because if
they were not, they never would be formulated it would require too much effort on
the part of the model formulator to collect the data for a dense matrix For example.
specifying 100 percent of a 1000 by 2000 dense matrix would require the input of 2
million nonzeros Thus sheer data collection effort on the part of the user seems to
be the main reason that linear programs that we ene ounter in practuce are sparse
Another reason is that even if dense models were formulated, the% prohabl could not
he ublvf'd parsitv is usually measured 6N. the deJ!ut1 d - of the ,i.ri matrix A.
which is assumed to have r nonzero entries

2 Strrcmurr and near triazigulantriy of the bai, In, problemiii, there ukmtiatri(es corre
sp(oind to interactinis between two, differerit t.t, 4 t e hri,1h igi, ian of he te(h o)',,
ies are in mdepen(Jerit ad henr ihe orrepimofiig vlenent , are ier-. \ieldnn g large

,parsw hlw ks in1 4 Indeed. there ippeir t t. a gr,,tt %.riet ',f o 1t itr ures el ouni
tr,.d In the sparsit, patternls in real -,,tld Pr,,hieri.-l Ili- I ,pareit inI time s-taged
andt 111lt1 1 staged linear program-., 'A 11, h1 ,rf , f41.- ,.l , l e ,I i'd w, 1ar. a St' inI Strin lUre.
l I-r. r[, p#t . a I stri t r, A mIttii r, kp,. -f i 'ait, r.(t. [ltr I. lire. Networks.

art' arn ther Rtene'ral (la.ss 1 hI ".- al'.,, af.axe patr.'\ j,,stATI't - ',idii the" Itet%,ork

.7 ':.

14 Section 3. Computational Testing Methodology

which are specially structured. One approach to solving large-scale linear programs
is to exploit special structures, as has been done by Fourer (1982). A difficulty with
this approach is that there appear to be enough alight differences in structure from
problem to problem that no characteristic pattern among them is readily apparent.
In the course of solving a linear program bythe simplex method, one can usually
rearrange the rows anid columns of the various bases encountered so that they are
nearly triangular. Near triangularity makes it a relatively inexpensive operation to
represent the basis as a product of lower and upper triangular matrices and preserves
much of the original sparsity from iteration to iteration.

3. Degeneracy. Random models, with probability one, do not have degenerate vertices,
while most real-world problems typically have many degenerate vertices. Recent work
by Krueger (1986) has analyzed the effects of degeneracy in random polyhedra. when
such degeneracy can be included among the randomly generated models. He found
that as n increases, the limiting behavior of the average performance of the simplex
method does not change when the number of degeneracies and m are fixed I)egeneracv
occurs in practice because modellers tend to overspecify a problem. thereby generating
redundant constraints. Furthermore, models tend to have constraints that convert
one variable into a sum of other variables. this can cause degenera(y. For example,
degeneracy can occur in practice because modellers include technologies which have a
number of activities wholly dependent on whether a particular technolog is used or
not. These can have constraints linking ther. If the technolog. is not used. each of
these constraints will generate a basic variable with value zero

4. Unit Elements. Many of the nonzero elements in the constraint matrix .4 of most
real-world problems have values of -1 or - I This often happens be(ause many of
the constraints are -bookkeeping- constraints that a m)deller puts ill to find the sums
of certain variables. If z represents the arlount inivested in sonie a(t vity, then some
constraint will add x, to its surn whilh another (ostraint will subtract ,I from its
sum. The column will then have t ,, nl/eros. I) and 1 0, whi(h ,iot ur in the
rows corresponding to inputs and outputs that xI affects Such relat|ins are fairly
common in models and are used to suniniarize t he result s (f mnodels iii various ways
Spreadsheets are very popular because the express the saine kind (.f relations in a
convenient format of two way tables that tllow easx h(izionital and ve ntral addition.

.5 Frasibilatv Most models for randornl% geni'rating pr-,btlerrr, are dehliheratelv primal
feasible (e g . Kuhn andi Quandt 1 li#,- 2i If a probhtlei i, Ri veii in prirrai feasible
(anonical form. then the Phas II sipllex aig,-rithni applie% whil' if a problem is
initially given in dual-feasible anomal forn, the ,tuaJ inplex aJeorithn applies
('omiposite simplex algorithin, ,re- r ,- ll aple te , t the. (ef "hr, th, prdhlem is
both primal and dual infeasible- iii its er!v.i t,)r al f,,r

W t, h them,' onsideratioik, as , a , kri,,nb , it "a- (itedI I, i,, aill t.-i ,ti .2 real
world problems I hese 1,rebiviti we ,r,. .c ,. Irt, 4 ', ru ,,.,w ... ,' ,,-- ei1 h , The. sNtetil- Op
t iiniza bo ir L. Abi rat ir in h l - I)elpm t iut , ,f ()pti -r , t k 1,., it], '-it, kI, lrle'rsl ll.

aide i'.e- ijeti g1aimi~ i 1t6ti lie 'd; - It ; 1 I -' 1. . C I tej '

andi art kelievedt !,, 6v rvplrv~,t,s! k' I..r. To j(: r I. I
Ilorners A I I thei prtdklei s tki r .t-' v' *'Le a:* IX A !iI

dual infeasible Ite', tli 114:*. V' A * ~ ' . . . i I

1 able 3 2

Section 3.7 Testing Methodolov 15

Inoblem Size Density
Name Rows Cols NonZeros Percent

AFIRO 28 32 8.2
ADLUTLE 56 97 465 8.56
SHARE2B 99 79 802 10.25
SHAREIB 118 225 1182 4.45
BEACONFD 174 262 3476 7.62
ISRAEL 175 142 2358 9.49
BRANDY 221 249 2150 3.91
E226 226 282 3038 4.77
CAPRI 272 353 1786 1.86
BANDM 306 472 2659 1.84

STAIR 357 467 3857 2.31
ETAMACRO 401 688 2489 0.90

Table 3.2 Problem Statistics

3.7 Testing Methodology

Except for the earlier reported tests on partial pricing, all computational tests in this
study were done on a Digital Equipment Corporation VaxStation II with 2 megabytes of
main memory. The operating system was MicroVMS version 4.3, and the VAX Fortran
Compiler, version 4.1, was used with the default options (which includes an optimizer). All
tests on a particular problem were run as a batch job to eliminate the effect of differences
in time of terminal input/output on the results.

The algorithms were implemented using MINOS version 5.0 as a framework, using
as modules for the various algorithms the same MINOS subroutines whenever possible,
in order to minimize any distortion of results due to special routines written specially for
each algorithm. All the options of MINOS were set at their defaults. For each specific
algorithm, four runs were made. These were classified as to whether the problem was
unscaled or scaled, and whether the initial crash basis was the UB crash basis or the SB
crash basis.

A special routine was written to act as a timer, which used a VMS routine that returns
the CPU time used in centiseconds. Hence, all timing results are accurate to at most a
hundredth of a second. Mainly timed were the execution of the entire code, including
input of the data and output of the results, and the execution of the MINOS subroutine
M5SOIV This subroutine takes as input a linear program in memory, and outputs in
memory the indices of the optimal basis. All algorithms were implemented as subroutines S

of this main solving routine. The CPU time of this central routine is used to compare the
speeds of each algorithm. Since each algorithm was a variant of the simplex method, the
number of simplex iterations was also recorded.

Average timing statistics were also collected for the following operations: refactorizing
the basis, ratio tests, pricing out, updating the factorization of the basis, solving for ir,
,olving for the representation of the incoming column, and updating the current solution
r Ifhe ('I" time required to collect these statistics was negligible compared to the total
exe ution tire of the routine M,5SOI.V, and did niot influence the results.

16 Section 3. Computational Testing Methodology

It should be noted that a re-run of the same algorithm on the same problem can
produce slightly different CPU times, but never a difference in iteration counts. This can
appen because after every iteration, MINOS prints one line to an output file on a disk

to record information about that iteration. The time to perform this operation can vary
slightly, depending upon the position of the read/write heads of the disk drive. Because of
the nature of the VMS operating system, it is impossible to recreate exactly the conditions
of the disk drive prior to each run of the solver. I assumed that this source of error was
small and could be ignored in comparing the CPU times of various algorithms.

For each algorithm, four tables that correspond to one of two crash bases and one of
two scaling options will be presented in the sections that follow. The vertical ordering of
the results will be by the increasing number of rows in each problem. Corresponding to
the four tables, the effects of scaling for the algorithm will be analyzed. The four tables for
each composite algorithm will be compared to the four tables in the next section. Section
8 contains a comparitive study of the entire set of algorithms.

3.8 Results for the Primal Simplex Algorithm
For the twelve problems, the standard two-phase procedure described in Section 2 was run.
The results for this algorithm are presented in Tables 3.4-3.7. Table 3.3 below summarizes
these results for the effects of scaling and the crash basis on the two-phase algorithm.

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

U 9B Unscaled IW7 4W-4L 4W7

Scaled 7W-74 6W-5L 6W-4L
SB Unscaled 4W4L 5-6L 5W-5L I

Scale 7W-4L 4W-6L 5 W-5L _

Table 3.3 Two-Phase Algorithm-Comparison of Scaling versus Nonscaling

For any pair of tables, the twelve problems were compared and the number of "wins" and
"losses" were counted. The entry W/L in Table 3.3 corresponds to the number of wins
and losses, respectively. A win W is scored for each problem when the combination shown
on the left margin of the table had less CPU time and less iterations than the one shown
on the top margin of the table. A loss L is similarly scored. If either the CPU time was
equal or the number of iterations was equal, or the number of iterations was higher, but
the CPU time was less, neither a win or a loss was credited. Hence, W + L 6 12 in all of
the cases. There are three possible explanations why the latter inconsistency occurred:

1. There are slight inaccuracies in the timing mechanism (e.g., AFIRO);
2. The number of iterations is close, but the simplex paths taken are slightly different,

with one path using somewhat sparser LU factorizations of the basis (e.g., BRANDY);
and,

3. The number of iterations is close, but more time is spent in Phase II, where the
computation of 7r is more expensive, since 6, is more dense in Phase II than in Phase
I (e.g., ETAMACRO).

It seems that there is no clear cut advantage to choosing scaling or one of the two different
starting crash bases. There is a slight advantage to using the SCALE option of MINOS
(scaled with the SB basis) as opposed to not using that option (unscaled with the UB
basis).

* .:-*

- a~aa~a . ,

Section 3.8 Results for the Primal Simplex Algorithm 17

Problem Nam Phase I Phase II Total CPU Tim
Iterations Iterations Iterations (Seconds)

AFIRO 2 4 6 0.52
ADI'ITLE 28 96 124 12.04
SHARE2B 82 42 124 15.20
SHARE1B 143 144 287 45.91
BEACONFD 8 30 38 8.36
ISRAEL 109 243 352 73.88
BRANDY 176 116 292 8.153
E226 111 460 571 147.74
CAPRI 140 143 283 62.02
BANDM 186 247 433 134.10
STAIR 198 319 517 273.25
ETAMACRO 251 422 673 200.59

Table 3.4 Two-Phase Algorithm-Unscaled with UB Basis

Problem Name Phase I Phase II Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 2 4 6 05

ADLfITIE 22 64 86 8.40
SHARE2B 84 52 136 16.17
SHARETB 135 116 251 36.92
BEACONFD 7 32 39 8.45
ISRAEL 93 211 304 62.38
BRANDY 253 139 392 94.59 ,

E226 69 417 486 118.55
CAPRI 153 63 216 46.62
BANDM 188 291 379 112.67
STAIR 180 126 306 167.99
ETAMACRO 282 477 759 230.12

Table 3.5 Two-Phase Algorithm-Scaled with UB Basis

18 Section 3. Computational Testing Methodology

Problem Nam Phase I Phase 1U TOWa CPU Tim
Itations Iterations Iterations (Seconds)

A-RO 2 4 6 0.51
ADLrHTE 31 79 110 10.16
SHARE2B 62 26 88 10.42
SHARE1B 135 169 304 47.53
BEACONFD 7 31 38 8.23
ISRAEL 65 225 290 59.23
BRANDY 178 114 292 70.63
E226 101 302 403 99.22
CAPRI 130 161 291 64.43
BANDM 188 253 441 133.45

STAIR 214 349 563 278.14
ETAMACRO 484 464 948 274.01

Table 3.6 Two-Phase Algorithm-Unscaled with SB Basis

Problem Name Phase I Phase II Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 2 4 6 0
ADLrITLE 30 69 99 9.37
SHARE2B 74 47 121 14.31
SHARE1B 144 116 260 39.12
BEACONFD 6 33 39 8.45
ISRAEL 41 186 227 48.68
BRANDY 216 161 377 -93.71

E226 101 368 469 117.97
CAPRI 178 57 235 48.46
BANDM 280 254 534 164.76
STAIR 193 196 389 211.16
ErAMACRO 219 669 888 275.66

Table 3.7 Two-Phase Algorithm-Scaled with SB Basis

p:

Section 4.1 The Wemghted Objective Method: Algorithm 19

Section 4. The Weighted Objective Method

In this section, the weighted objective method is discussed. The algorithm is similar to
the classical big-M method and absolute value penalty methods of nonlinear programming.
These similarities are noted and the implementation of the algorithm is discussed as well.

4.1 The Weighted Objective Method: Algorithm

The main idea behind the weighted objective method is to create a new linear program
combining the objectives used in Phase I and Phase II in the standard procedure. The
Phase I objective dTx is combined with the Phase II objective cTx to form a weighted
combination z = dTx + cacTx, which is then minimized. If the new objective has an optimal
solution that is infeasible for the original problem, then a is decreased by a factor of 10
and the method is continued. If a is reduced by a factor of 10 five times (a MINOS
default) and a feasible solution has not been reached, then a is set to 0, and the usual two-
phase approach is resumed. If the weighted linear program remains infeasible after a 10'
reduction, it is most likely the original linear program is infeasible or a was initially chosen
much too large. The usual 'most negative reduced cost rule' is used to choose the incoming
variable. The algorithm that follows looks very similar to the two-phase procedure, with
the major differences being the way 6 is defined and in the scheme for reducing a.

procedure weighted-objective;
finished 4- false;
count -- 5;
while not finished do

begin
if needs -factorization(B) then factorize(B);
if infeasible-basis(B) then 4- -d+ac else 4-- c;

FindPI: Solve rTB = 6. for 7;I

PriceOut: Find s such that x, has minimum reduced cost j,;

optimal +- e. > 0;
if not optimal then

begin

Represent: Solve Bp = [A I]., for p;1

RatioTest: Find r such that x., blocks the change in x.;,

unbounded +- r = 0
if not unbounded then

begin
9 - 3r;

Update: Update value of x;

pivot(B, s, q, r);
end;

end;
infeasible +- infeasible-basis (B) and optimal;
if infeasible and a > 0 then

? n4

20 Section 4. The Weighted Objective Method

beiibeible #- false;

if count > I then
begin

count +- count - 1;
o -- 0/1O;
end

else o 4- 0;
end;

finished +- optimal or unbounded or infeasible;
end;

MINOS provides a WEIGHT 0 LINEAR OBJECTIVE option that allows the user to
choose the initial value of a. It is not clear what heuristics a user should use when choos-
ing a. In their research on the barrier method, Gill et al. (1986) found that a choice of
a = .1/lcl was promising for that method. The same value was used for the computational
tests contained herein.

4.2 The Big-M Method
The big-M method is very similar to the weighted objective method. In its simplest form,
a linear program with equality constraints is given:

minimize cTz

subject to Ax = b, (4.1)
X>O.

By multiplying equation i by -1 if bi < 0, it transforms this linear program so that bi > 0
for all i. A set of artificial variables u is added and a new objective is formed:

minimize cTx + MeTu
subject to Ax + Iu = b, (4.2)

X, ,u_ 0,

where er= (1,1,..., 1). If M is a very large number, then minimization of this form will
be equivalent to the textbook form of Phase I of the simplex method. (A slightly different
form is used in MINOS). If M is given a specific value, then this method is equivalent to
the weighted objective method.

The origins of this method are not clear. Hadley (1962) refers to the method as
"Charnes' -M method." The earliest work by Charnes using the notation of M appears
in Charnes, Cooper, and Henderson (1953). There, Charnes credits Dantzig's first paper
on the simplex method (1951) with the idea that became the big-M method. There,
Dantzig referred to assigning "small" weights to the infeasibility objective. (Since his
linear program was a maximization problem, the "small" must have been in the sense of
being initially very negative.) There also seems to be an independent development which
used the notation w for M as used above. This appears in the works of Orden (1951) and
Mayberry (1951), who credit Dantzig with the idea. Orden worked closely with Dantzig
in the Pentagon around 1950 and the idea may have been informally suggested to Orden
by Dantzig. In the implementation of the method, it is not clear whether M is to be used
symbolically, or whether M was actually a preassigned a fixed value. The big-M method
has been reported to have been quite successful when a model with minor changes is solved
repeatedly and the value of M (experimentally arrived at) is not too large.

Section 4.4 Implementation and Computational Results 21

4.3 Absolute Value Penalty Methods

Gill et al. (1981) describe the use of absolute value penalty functions when applied to
nonlinear programs with nonlinear constraints. When applied to the linear program (4.1),
this method becomes equivalent to the weighted objective method.

Given the nonlinear program

minimize F(x)
subject to 6i (x) = 0, i = 1,... ,t, (4.3)

the absolute value penalty function is defined as

t

PA(x, p) = F(x) + p 16j (X)1, (4.4)
i=1

for some scalar p > 0. If one lets

6i(x) = bi- aTz =ui, (4.5)

where u represents the artificial variables of the big-M method, then

t

PA(,p) = cTZ + py: ui. (4.6)
i=1

This is the same function used by the big-M method with p = M. Hence, the absolute
value penalty function, when applied to linear programs, yields the weighted objective
method.

4.4 Implementation and Computational Results
The weighted objective method is quite simple to implement. Since the objective vector
c is stored as part of the matrix A in MINOS, a pass must be made through A in order
to compute JIcJJ. MINOS provides the mechanism for reducing a if the current basis is
optimal for the weighted objective but still infeasible. Hence, there is a small amount of
extra work necessary for this method that occurs at the beginning of execution and during
the case when a must be reduced. It should also be noted that partial pricing is available
with this algorithm, if the user so desires.

The computational results are presented in Tables 4.3-4.6. The column for "Infea-
sibility" iterations refers to iterations while the solution was infeasible. The column for
"Post-Infeasibility" iterations refers to iterations that occurred after a feasible solution was
found, which were iterations identical to Phase II of the two-phase algorithm. It is inter-
esting to note that for the problem BRANDY without scaling, the first feasible solution
found for both starting bases was the optimal solution. This phenomena did not occur for
this problem when the problem was scaled.

Table 4.5 summarizes the effects of scaling for the weighted objective algorithm. The
meaning of each entry is the same as in Section 3. The choice of starting basis or scaling
seems to have little effect on this algorithm.

-~~~~A %. 2.%'. ~ ~

,A7

22 Section 4. The Weighted Objective Method

Table 4.6 compares the weighted objective algorithm to the two-phase algorithm. For
each scaling/starting-basis pair, the two tables were compared separately for CPU time
and iterations. The W/L entry indicates the number of wins and losses for the weighted
objective algorithm versus the two-phase algorithm. In comparing the results, there were
many instances where the number of iterations was unchanged, indicating that the choice
of initial weight may be too small. From this table, we can see that the weighted objective
algorithm tends to decrease the number of pivots necessary to reach the optimal solution,
but does not always reduce the CPU time. This is because in the case where the number
of iterations on a particular problem is equal, the CPU tme for the weighted objective
algorithm will be higher due to the initial computation of Ilcil.

-.

Section 4.4 Implementation and Computational Results 23

Problem Name Infeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)

ATO 2 4 6 0.53
ADLHTLE 31 110 141 13.52
SHARE2B 77 41 118 14.94
SHAREIB 143- 144 287 47.80
BEACONFD 8 29 37 8.46
ISRAEL 148 230 378 83.47
BRANDY 311 0 311 79.44

E226 115 373 488 129.47
CAPRI 194 35 229 52.05
BAM 184 177 361 115.27
STAIR 198 319 517 263.17
EITAMACRO 217 389 606 181.98

Table 4.1 Weighted Objective Algorithm-Unscaled with UB Basis

Problem Name Infeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 2 4 6 0.53
ADLITTLE 22 63 85 8.35
SHARE2B 94 36 130 15.85
SHAREIB 128 136 40.74
BEACONFD 7 32 39 8.83
ISRAEL 90 209 299 64.16
BRANDY 228 138 366 88.30
E226 70 411 481 121.27
CAPRI 171 45 216 48.87
BANDM 186 207 P7 123.99
STAIR 180 126 306 174.74
ETAMACRO 194 584 778 256.10

Table 4.2 Weighted Objective Algorithm-Scaled with UB Basis

I]

24 Section 4. The Weighted Objective Method

Problem Nam nfeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds

AFIRO 2 4 6 0.51
ADUTILE 26 73 99 9.43
SHARE2B 60 25 85 9.82
SHAREIB 149 13 306 52.61
BEACONFD 7 31 38 8.58
ISRAEL 92 215 307 65.25
BRANDY 237 0 237 61.09
E226 101 390 491 127.13
CAPRI 195 51 246 54.91
BANDM 235 212 447 141.83
STAIR 215 275 490 243.72
ETAMACRO 471 462 933 286.92

Table 4.3 Weighted Objective Algorithm- Unscaled with SB Basis

Problem Name Infeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)

AIRO 2 4 6 0.52
ADLITE 26 67 93 8.99
SHARE2B 90 55 145 18.02
SHAREI B 123 75 198 31.52

BEACONFD 6 33 39 8.95
ISRAEL 43 184 227 49.52
BRANDY 208 143 331 85.14
E226 106 348 454 112.87
CAPRI 204 53 257 57.71
BANDM 280 254 534 169.87
STAIR 193 196 389 204.45
ETAMACRO 219 513 732 235.86

Table 4.4 Weighted Objective Algorithm-Scaled with SB Basis

%* m .o . . . - • • w r .- o - , , -. .

Section 4.4 Implementation and Computational Results 25

Starting Basis UB SB_ _
Scaling Status Unscaled Scaled Unscaled Scaled

U B Unscaled 5-L 5W-5L 6W-SL
Scaled 8W-3L 5W-5LWW,

SB Unscaled W-5L 3W-8 I 5W-6L
I Scaled 5W- 5W-5L 6W-5L

Table 4.5 Weighted Objective Algorithm
Comparison of Scaling versus Nonscaling

Starting Basis UB SB
Scaling Status Unscale Scaled Unscaled Scaled

Weighted Objective CPU 6W-6L 3W-9L 5W-6L 6W-6L ,
versus Two-Fhase Iterations 6W- 5W- 6W - 5W-2L

lahle 1 6 Weighted Objective Algorithm (Comparison t() Two Phase Algorit hm .

t

4

26 Section 5. The Markowitz Criteion

Sectioem 5. The Markoewz Cesion

The Markowits criterion is an alternative rule for selecting the incoming variable in
Phase I of the simplex method. In this section, the algorithm and its implementation are
discussed and computational results are presented.

5.1 The Minr kte z Crien: Algithm

The criterion informally suggested to Dantzig by Harry Markowitz and discussed in
Dantzig's book (1963) is a different rule for choosing the incoming variable x. in Phase
I. After a feasible point is found, the usual Phase II procedure is resumed. The reduced
cost d, represents the decrease in the infeasibility form w = dTx per unit change in z,.
Similarly, the reduced cost e. represents the decrease in the objective z = cTr per unit
change in x,. The idea behind the Markowitz criterion is to choose z. in such a way that
there is a maximum decrease of the objective form z per unit decreae of the infesibilitV
form w. Mathematically, s is chosen so that

Ce C.

= min-- (5.11)
-d. ,, <o -d.

The algorithm is guaranteed to converge, since d. < 0, and u, will decrease at every
iteration, assuming some lexicofraphic device for resolving degeneracy. The procedure for
this algorithm in terms of the simplex method is as follows:

procedure Mar/owmt-_Cnereon;
finuhed .-- false;
while not finuhed do

begin
if need.4actonzaton(B) then factorize(B);

FindPI: Solve rTB = c. for 7r,
if snfeasble-basu(B) then begin

FindPI: Solve frTB = d. for *

PriceOut: Find i such that x. has rain ratio for d0 <0]

optimal .- > 0.
end

else begin

I PriceOut: Find s such that x, has iiiiinimum reduced cost c.

optimal - c. > 0.
end

if not optimal then

Represent Solve Bp = '.4 1 fr p.

RatioTest Find r such that i., blocks rh change i r, I

unbounded .- r = 0

Section 5.1 The Markowitz Criterion: Algorithm 27

if not uibounded then
begin

IUpdate: Update value of I:

pivot(B, s, q, r);
end

end:
infea sible .- tnfeajtble.bwu(B) and optimal:
finished .- optimal or unbounded or mfean! ble.
end

There are some interesting properties of this algorithm. If c. > 0. then a change in 'Anv
nonbasic variable that decreases w will increase z. At such a point, the current solution to
the linear program is most likely superoptimal. If e, < 0, then changing r, will decrease
simultaneously both the infeasibility form u, and the objective form z. This would appear
to be the most desired choice of 9. However, it appears that any such s are found for only
the first few iterations of the method. Thereafter, c. > 0. This observation leads one to
believe that the Markowitz criterion has the feature that the primal and dual feasibility
(,fiditions are at war with each other. In the next section, the computational results wil

verify this statement
I he Markowitz criterion relates in an interesting way to the weighted objective

riet hod. The weighted objective Is

z = dTx + acTx. (5.1.2)

1his objective can be multiplied by I/a so that the weight is now on the infeasibility form.
I he red uvd (osts for this new objective are equal to

-z d + d c- 513

I",,r ary nonbasic r) with d) < 0. if

- - ,(5. 1.4)

tiE 'I

-d-q

HN ,lfTiarlig equati n) 5 1 1 and (5... one can see that the Markowiti criterion is

dx iottTiiall% balalicintg the weight on the inifeasibilitv form d 7. s, that S) (I it chooses
I i iiii i iit tI weight 4 that tils o(it it i n is Irwit

Sectioni 5 The .".arkos-iz Critenwi

5.2 Impementation and Computational Results

I he Markowitz criterion requires sorne extra work prr iteration when the basis is prmal
infeasible In Phase I of the two- phase miet hod. onlN the pri es and rediiued e edt' I-or the
nfrasibilitv form d~r are corn uted For the Markowitz criterion, the prit-es and reduced
rosts for the objective form r xz may need to be romiputedi as' well I here- arr two possible
methods of implementation where (d is the opt inafirv toleraro e &-, definied im Sect ion 3

I In the main loop that computes the reducerd eiosts (i, for each flonlb&Si(X),~ c), I
oniputed a-i well The values of the elemient% (of the spa~rse miat rix .4 are each retrieved

0)11ce from mietnor

(Jor each non hasio .r). ') is im1p ut ed)ril 'A whell d' td ~r 1) le ,Is nlot a 'Aa~

Soniptited HoWever, When'l C, IS. 14rfepiutrol 6 sndihr prit ing I i'p t sed as 'Abel,
(omuput ing (1, FIherefore. r-Ach eleniet't 4 f t he '.parst' itt ri), .4 1' re-t rie% eelr twirt fT4i n
rienior%

In either ease, an extra (all toi the procediire FxatdPI ruiiit be maciit , -rle-r t4 ompuli~t.
It wouldi seemx that the se otid (if the twio ,ieptiorei iN inore etfi melt F\ Pf'rilitelit i t-% 1ieruC
lildli ates that the s4'fond optioli was ketter ill oer 4 0i perl crt 41f thf Ie 'rpttoel1t
ilere(ve the results reported bel(% i~ust t hait cqpi in

Ine order to use equivalent ttolerare(e rirereia W tos fjot A ~ t d, - d7 art-

1eSO(1 wheic evaluating the expression 1' If '1i d, td thetl tMc ' rrim %c)Uit i4'!

i' 4onsidereii opt ermidi for t he Phase I liuee4l jircigrimi, dii-ic I' ehett 1rl1 If pr-oedu re

I he (oepnit ationealI resu its for t he \1r mko), t,, m iteritomcare preMmwe-i me I Itj) I 4
1 iiv ohirrin for 1Infeasiiet traCoe refe-r t,) the ;.eereit: of jti~t or,'prformed 'A hien

I he t)ases was primlal itifrasilkle I lee f~im~. to otl~ei~~t trt 're-fer, 4 t the
!01.i1het (if iterat'eme, perfccrmee'd aifi t fa ir, Poe I a er ' ite ng to re4ot#

thatt fo r rreanv of 'he 1tcclclenmi'. t ho. tir '.1I 'Aow* I h,,; , i 'pT illial 11111t114

meeeperederet of the starting crash fats ori 14 aherx I it;' iloil 'it'- t ha! Itie, \arkowit,
' ritereon usuall v fimeds a basis that :ssnpeoj andi 11mulz ail e sjrotmilt until the

opt ertial basis is foundi~ Motf t he ;critemm' WTI] 'Ie f'-v Phte I Itecr '"I il lieu' e. t fit
em1tial feasible polit foun1d b.% the \14f k, A 11, 1 iee, ' rl Vse 1, '11 1- tr l mcilitlom, ill

ternis of Ilamming diistant, v
I able, 7 5 sumtmarizes the Oft-,e t ' f ahc i I. I I h' \IaT kf I" I ;t t.! In-rrenrilli

oif eac h etrv is the sariie as iii Se(tel1 I he. , hi' e) 0. 1119er -1' 4 l in stw'rr 14,

have no overall effect onl this alg(orrt i, 1 e' lilt-re'r ;1! 1' e 1 ta, Th B i~i ad

hetter than the UB basis whene '(alilp~ 1".' ' l ' es~ -'i. eesu e
scAling wits not lesteel

Ilable 5c f, coempares ilte NJar k,\A.it, rile oi, ta 1to c t: In r en, h
(aing'/siart ing, lases pair. theef tv-'' ltu At-i '!t-d . Pt ll)-. a II!

it cratl i I lit It' L eritr'. indi' ate's tOw fi, r't . I" '4 ! '.'! .

4 rlt erion \ xersne' t he I w" phasev '4i!1 11 Tii. II(ri 1 !'..'t . A.''.~ ' e!'

11, itI varit age t 'I I I I I N t a \ ir K''\A I f' ', ,,, * * , . ,

Section 5.2 Implementation and Computational Results 29

Problem Name Infeasibility Post-Infeas. Total CtU Time
Iterations Iterations Iterations (Seconds)

AFIRO 7 3 0 0.78
ADLHT.,E 117 0 117 12.77
SHARE21B 150 2 152 22.73
SHARE1B 196 13 209 36.9
BEACONFD 56 11 67 15.85
ISRAEL 315 0 315 80.35
BRANDY 359 0 359 103.32
E226 632 0 632 208.88
CAPRI 203 33 236 60.19
BANDM 599 0 5W9 225.55

STAIR 1021 0 1021 593.92
ETAMACRO 673 191 864 321.73

I able 5 1 Markowitz ('rteron Vi's-aled with UB Basis

Problem Name Infeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 7 73 10 0.79
ADIITLE 100 0 100 11.34
SHARE2B 83 10 93 12.44
SHAREIB 153 2 155 27.25
BEACONFD 59 21 80 19.50
ISRAEL 260 25 285 69.34
BRANDY"- 465- 0 465 133.88

E226 649 27 676 214.83
CAPRI 190 39 229 58.19
BANDMI 70W 0 70 265.61

STAIR 1766 0 1766 984.42
FVIAMACR(, 568 157 725 267.54

I
•
t ,, B I

-Af

30 Section 5. The Markowitz Criterion

Problem Nam Infeasibility Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO '7 -- 1 10- 0.78

ADLflTrIE 131 0 131 14.14
SHARE2B 138 8 146 20.72
SHARE1B 268 12 280 50.14
BEACONFD 75 4 79 21.30
ISRAEL 271 0 271 70.31
BRANDY 479 0 479 137.23
E226 566 14 580 188.23
CAPRI 280 14 294 74.87
BANDM 684 0 684 260.22
STAIR 1238 14 1252 637.92
ETAMACRO 883 67 950 358.07

Table 5.3 Markowitz Criterion-Unscaled with SB Basis

Problem Name Infeasibility IPost-Infcas. Total CPU Time

Iterations I Iterations Iterations (Seconds)
AFIRO 7 3 10 0.77
ADLrIT E 90 1 91 10.09
SHARE2B 74 10 84 11.11
SHAREIB 247 44 291 50.16
BEACONFD 61 12 73 19.46
ISRAEL 262 0 262 68.14
BRANDY 448 0 448 128.26
E226 640 0 640 204.22
CAPRI 308 13 321 83.62

WD575 0 575 211.62
STAIR 1849 0 1849 1088.95
ETAMACRO 524 195 719 259.51

Iable 5.4 Markowitz Criterion -Scaled with SB Basis

.... ",.'-**..*. ., .. o.1".** - o- °o.. • * -. - o.. .. • .'. "- 1

Section 5.2 Implementation and Computational Results 31

_Starting Basis UB SB____
Scaling Status Unscaled Scaled Unscaled Scaled

U B UnscaledT- 5-W-6L- 8W-3L 5WL
Scaled 6W-5L 6W-3L 3

SB Unscaled W-8L 3W-6L "4W-7L
Scaled 5W-5L 8W-3F 7W-4L _

Table 5.5 Markowitz Criterion-Comparisons of Scaling versus Nonscaling

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

Markowitz Criterion I CPU 2W-IL2W-IO OW-12L I2W-IOL,
versus Two-Phase Iterations 4W-8L 4W-8L 12W-10 3W-9L.

Table 5.6 Markowitz Criterion-Comparison to Two-Phase Algorithm

t.

A

* . .~. ...
*ls ~ .% .. ' .. * -' . * -l

32 Section 6. The Self-Dual Parametric Algorithm

Section 6. The Self-Dual Parametric Algorithm

In this section, Dantzig's self-dual parametric algorithm is discussed. This algorithm
has been shown (Lustig, 1987) to be equivalent to Lemke's algorithm for solving linear
complementarity problems when applied to linear programs as a special case. The imple-
mentation of the self-dual algorithm is described and computational results are presented.

6.1 Dantzig's Self-Dual Parametric Algorithm

Dantzig (1963) describes the self-dual parametric algorithm as a method which does not
require an initial primal or dual feasible solution, but which uses the concepts of the
primal and dual simplex algorithms extensively. Both the weighted objective method and
the Markowitz criterion are alternative rules for choosing the incoming variable s in Phase
I of the simplex method. After a is chosen, the outgoing variable r is chosen by the normal
ratio test. In contrast, the self-dual algorithm changes the order of choosing the incoming
variable s and the outgoing variable r on each iteration depending on the current basic
solution to the problem. Ravindran (1970) gave an equivalent statement of the algorithm
by modifying Lemke's method to modify only the primal simplex tableau.

It is easier to understand the method using some of his notation. The discussion of
the algorithm is simpler when applied to the linear program

minimize cTx

subject to Ax > b, (6.1.1)
z>O.

A parameter 0 is used in this method and the linear program (6.1.1) is transformed to

minimize (c + Od)Tx

subject to - Ax + Iu = -b + Of, (6.1.2)
x,u> 0

where u E Rm is a vector of slack variables which form an initial basis,

1, if bi > 0; for i = 1,... 7, (6.1.3)
0, if b, <0

and

d= 1, if c<0; , for j=1,...,n. (6.1.4)
0,if c1 0

If 0 = +oo, then the basis ul, U2 , ... , UM is both primal and dual feasible for the parametric
linear program (6.1.2). There exists a value

00 = -min min ,> 0 min Ld > 0 (6.1.5)

dd

p

Section 6.1 Dantzig's Self-Dual Parametric Algorithm 33

and an e > 0 such that for 0 = 00 - e, the current basic solution to the parametric linear
program (6.1.2) is infeasible for only one primal variable or one dual variable (assuming
no ties exist when equation (6.1.5) is evaluated-this occurs when degeneracy exists in
the parametric linear program). If 0 = 0, then the parametric linear program has either
multiple primal or multiple dual solutions. If a reduced cost ci + 9od, for a nonbasic xz
was zero, one could set s = and attempt to make x, basic, using the primal simplex ratio
test

= . {i-n-b,+LO , -a,. > 0 (6.1.6)
i=11 ,..M -Si "

to determine r. If a primal basic variable u, = -b, + Bofi was zero, then one could set
r = i and use the dual simplex ratio test

s ... at.gIjf mi c±+ ,-aO < 0 (6.1.7)

to determine s. After exchanging x, and u, in the basis, the new basic solution is optimal
for 6 = 0. Both f and d must be updated to values f and d in the same way as -b and c ,%
are updated to values b and e. Dantzig (1963) and Ravindran (1970) give different proofs
showing that 0 can now be reduced to a value below 0 while maintaining primal and dual
feasibility. The system is now in the same form as the parametric linear program (6.1.2)
by a relabeling of the variables. The process can be continued until 0 = 0. At this point, a
primal and dual feasible solution to the original linear program (6.1.1) has been obtained.
If the ratio test performed in (6.1.6) has no -a,, > 0 or the ratio test performed in (6.1.7)
has no -a,, 1 < 0, then the original linear program (6.1.1) is primal or dual infeasible (or
both).

the framework of the revised simplex method, the algorithm is as follows:

procedure Self_Dual(f,d);
finished +- false;0 +- + OC;

while not fiished do begin
optimal +- false;
if needsqfactorization(B) then factorize(B);

RatioTest: Find s or r such that x ,,. or e, blocks the change in 6

if blocks(c,) then begin

Represent: Solve Bp = [A I]., for p;

RatioTest: Find r such that r., + 0f, blocks the change in x,;

unbounded nfeasible - r = 0;
if not unbounded infeasible then begin

FindPI: Solve Tyi = (r for ";

PriceOut: Compute A,.-y4[A I];

end
end

else if blocks(x,) then begin

".

34 Section 6. The Self-Dual Parametric Algorithm

FindPI: Solve 9TB = e,. for ;I

PriceOut: Compute ' = A. - y[A LL]

RatioTest: Find s such that e, + Od. blocks the change in 7r,;

unbounded infeasible *- s = 0;
if not unbounded-infeasible then

IRepresent: Solve Bp = (A I].. for p;

end
finished +- optimal or unbounded infeasible;
if not finished then begin

IUpdate: Update values of x, j, , f;

pivoi(B, s, q, r);
end;

end;

There are some things to note about this form of the algorithm. The variable
unbounded -infeasible indicates that the original linear program has either an unbounded
objective function or no feasible solution. If this variable is set to true, then one can use
the normal two-phase simplex method to determine the infeasibility or unboundedness of
the problem. The vector ;- is needed to update J and d. In the normal revised simplex
method, e is recomputed each iteration by pricing out. In the revised simple>. form of the
self-dual method, it is more efficient to compute "' by a pricing operation and then update
J and d using the formulas

C--e- 61 and d- d-6 27 ", (6.1.8)

where

61=- and 62- . (6.1.9)

This method eliminates one full call to the routine PriceOut.
It should be noted that the routine name SelfDual(f, d) has f and d as parameters.

This is because the initial choice of f and d must satisfy -b + Of _ 0 and c + Od> 0 for
some 0 > 0. Hence the initial values of f and d defined in equations (6.1.3) and (6.1.4) are
specific instances of the parameters f and d, respectively. In Section 7, a variant of the
self-dual method that uses a different choice for the initial values of f and d is discussed.

Section 6.2 Implementation and Computational Results 35

6.2 Implementation and Computational Results

As compared to the two-phase simplex method, the self-dual algorithm must perform
some extra computational work per iteration. This extra work can be separated into two
categories-extra ratio tests and extra work in the procedure Update. In the two-phase
method, there is one ratio test for the m primal basic variables on every iteration. In the
self-dual algorithm, a ratio test is used to compute the new value of 0, by testing the m
primal basic variables and the n reduced costs for the nonbasic variables. If a dual variable
blocks the decrease of 0, the primal simplex algorithm is used and another ratio test for
the m primal variables is used. If a primal variable blocks the decrease of 0, then the dual
simplex algorithm is used and another ratio test for the n reduced costs is used. Therefore,
on each iteration, either 2m + n or m + 2n variables are tested in various ratio tests.

On each iteration in the two-phase simplex method, only the values of the rn primal
basic variables must be updated. In the self-dual method, the values of d, d and f must
be updated as well. Hence 2n + m extra variables must have their values updated besides
the m components of x.

For theoretical convergence of the self-dual method, 9 should decrease on each itera-
tion. However, due to degeneracies in the parametric linear program (6.1.2), 0 may remain
unchanged. Because of round-off errors, 0 may actually increase by an extremely small
amount. Hence, on each iteration, a tentative value of 0 = 9 is computed via the ratio
test. Then 0 is computed by taking the minimum of the previous value of 0 and 9, i.e.,

0 -- min(9, 9). (6.2.1)

Other round-off errors may cause the values x + Of and J+ Od to violate their feasibility
constraints by more than the primal and dual feasibility tolerances, respectively. When
MINOS checks to see if the current solution is too infeasible (in accordance with the CHECK
FREQUENCY option), the current parametric solution is checked as well. If a component
of the parametric solution violates its respective feasibility tolerance, then the respective
component of f or d is reset so that the current parametric solution is feasible. This allows
the algorithm to continue from the current solution without increasing the value of 0.

In the above discussion of the self-dual method, it was assumed that the linear program
had every variable bounded below by zero and that all of the linear constraints were of the
same type. The method was started from the basic variable set consisting of the m slack
variables. In the context of MINOS, the self-dual method is started from a crash basis B.
and(each variable may have a finite lower or upper bound, or both. This affects the sign
of the nonzeros of f. G]iven this initial basis, the nonbasic variables are represented by set
A' such t hat A' = A,. Each of the nonbasic variables x.,, is set equal to one of its bounds.
Ihe cquatiols for the linear program can be rewritten as

Bx, + Nx., = 0, (6.2.2a)
I < X < u. (6.2.2b)

Since B is nonsingular, x, can be computed by solving equation (6.2.2a). Now f, is chosen
acco(rd Ii g to whether x,, violates its upper or lower bound, i.e.

I if x' < 1. j1 = 5" ,
f, = -1 if.r) > u '. 1 ; (6.2.3)

0 ot hcrwise.

I

..- 1

36 Section 6. The Self-Dual Parametric Algorithm

Then 1o _< x. + 6f _< ur for all sufficiently large 0 if each of the variables in the initial
crash basis has exactly one finite bound.

If a variable has finite lower and upper bounds, then the parametric value z, + Of
will satisfy one bound for large values of 0, but not the other. It turns out that the most
difficult computational issue in the self-dual method is the manipulation of primal basic
variables that have finite lower and upper bounds. Suppose zi is such a variable in the
initial crash basis and that B, = 1. If z: < I, for the initial basic solution, then the
parameterized value z1 + Of, > ul for large 0. After a pivot in the self-dual method, the
value of x, may exceed 11 in such a way that x, + Ofi > 1 for all 0 > 0. Furthermore,
Tl + Of, > u1 for the current value of 0. In order for the self-dual method to converge, it
is necessary to treat such conditions specially.

In the theoretical version of the self-dual method, each component of z has a lower
bound of 0 and no upper bound. If a variable z has an upper bound ul, then the constraint

zX + s = U1 (6.2.4)

is added to the problem, where s is the slack variable for the upper bound constraint. In
the context of MINOS, it is necessary to compute the value of s implicitly. If such a row
(6.2.4) were added to the MINOS constraint set, then the variable s would be in the initial
basis. Furthermore, the initial basic solution would satisfy

B 0)(T NTA (6.2.5)(1 0 ... 0 1 a U1 "

Similarly, the initial value of f satisfies

(1 OB... 0 1)(Q=O) (6.2.6)

for some j (where f, is the initial value of f corresponding to xi). If f. represents the
value of f corresponding to a on later iterations and x, remains basic, then

(1 0 B 0)()=(L) " (6.2.7)

Hence, the value of !, can be computed as

= f-1. (6.2.8)

Therefore, the parametric value of s is

s(O) = U, - xi + O(fi - ht). (6.2.9)

In a primal simplex ratio test, either x, +f 10 is tested or s(O) is, depending upon whether x,
is increasing or decreasing as a function of the incoming basic variable. This computation is
simple, as long as the initial values of f are saved throughout the execution of the method.

~~~~~~~~~~~~~~~~~.... ... . ..%..%.............. ................ %........ .... ......... -...-..-.. -....- '..-...;. .- .



Section 6.2 Implementation and Computational Results 37

This argument also applies to the first ratio test done on each iteration to find the
variable that blocks the decrease of 0. If s(O) blocks the decrease of 0, then X, exits the
basis and becomes nonbasic at its upper bound.

It should be noted that this problem does not occur with the parametric reduced
costs, since the dual variables of the linear program in MINOS standard form have at least
one infinite bound (ignoring the rare case of nonbasic free variables).

The computational results for the self-dual method are presented in Tables 6.2.1-6.2.4.
The columns for primal and dual iterations correspond to the number of primal simplex
and dual simplex iterations, respectively, done by the self-dual algorithm.

Table 6.2.5 compares the effects of scaling and the different crash bases on the self-dual
algorithm. The meaning of each entry is the same as in Section 3. Table 6.2.6 compares
the self-dual algorithm to the two-phase algorithm for iterations and CPU time. The entry
I - L indicates the number of times that the self-dual algorithm had less iterations (CPU
time) than the two-phase algorithm. The self-dual algorithm seems to reduce the number
of iterations on some problems, but the extra work per iteration increases the CPU time
enough so that the self-dual algorithm is faster than the two-phase algorithm for only a
few problems.

4

7i



38 Section 6. The Self-Dual Parametric Algorithm

Problem Name Primal Dual Total CPU Time

Iterations Iterations Iterations (Seconds)
AFIRO 4 26 0.6
ADLITILE 21 73 94 11.59
SHARE2B 44 63 107 15.96
SHAREB 241 249 490 101.22
BEACONFD 27 11 38 9.56
ISRAEL 240 82 322 82.22
BRANDY 120 312 432 129.76
E226 277 201 478 163.66
CAPRI 28 144 172 48.37
BANDM 275 180 455 187.31
STAIR 307 351 658 381.97
ETAMACRO 472 373 845 362.25

Table 6.2.1 Self-Dual Algorithm-Unscaled with UB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

~- -i-AFIRO 4 2 6 -0.62

ADLITTLE 33 39 72 8.57
SHARE2B 67 79 146 22.08
SHARE1B 128 185 313 61.90

BEACONFD 31 17 48 12.05
ISRAEL 177 60 237 61.20
BRANDY 218 325 343 161.91
E226 295 205 500 166.47
CAPRI 45 159 204 57.81
BANDM 182 161 343 131.11

STAIR 186 335 521 316.63
ETAMACRO 635 227 862 367.55

Table 6.2.2 Self-Dual Algorithm-Scaled with UB Basis

4



Section 6.2 Implementation and Computational Results 39

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 6 0.65
ADLIITLE 29 94 123 14.79
SHARE2B 53 59 112 17.02
SHAREB 127 128 255 50.83
BEACONFD 39 11 50 13.47
ISRAEL 210 21 231 58.00
BRANDY 175 226 401 122.26
E226 261 149 410 136.39
CAPRI 30 138 168 48.59
BANDM 288 265 553 224.54

STAIR 311 362 673 375.62
ETAMACRO 419 425 844 375.73

Table 6.2.3 Self-Dual Algorithm-Unscaled with SB Basis

Problem Name Primal Dual Tot CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 6 0.62
ADLITLE 46 70 116 14.39
SHARE2B 91 81 172 25.37
SHARE1B 105 155 260 52.57
BEACONFD 36 12 48 11.92
ISRAEL 176 33 209 54.16
BRANDY 135 209 344 106.08
E226 268 177 445 145.49
CAPRI 31 190 221 62.50
BANDM 270 269 539 212.70
STAIR 184 287 471 288.15
ETAMACRO 668 256 924 400.67

Table 6.2.4 Self-Dual Algorithm--Scaled with SB Basis

""" -"" - •"- --"-" " " '""'"'"":'''''" -" ', ..- "',-_'"'..".. . . . . . .- ,-.- I_. -.-.



40 Section 6. The Self-Dual Parametric Algorithm

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

U B Uns'caled I6W-5L 4W-4L 6W-SL
Scaled 5WF 4W-6L 3W5

S B Unscaled 4W-4L 6W
I Scaled 3W-6L 5W-5L 6W-5L

Table 6.2.5 Self-Dual Algorithm-Comparison of Scaling versus Nonscaling

Starting Basis UB SB
I Scaling Status Unscaled Scaled Unscaled Scaled

Self-Dual I CPU 2W-1OL 1W-1L 2W-0L OW-12L
versus Two-Phase Iterations - 4W-= 4W7 W-6

Table 6.2.6 Self-Dual Algorithm-Comparison to Two-Phase Algorithm



Section 7.1 Normalized Covering Vectors 41

Section 7. Variants of the Self-Dual Parametric Algorithm

In this section, two variants of the self-dual parametric algorithm are discussed.
Both variants are motivated by considering the equivalence of the self-dual algorithm and
Lemke's method, shown by Lustig (1987). The first method is equivalent to choosing a
different covering vector for Lemke's algorithm. The second method tries to account for
the prevalence of fixed variables in the initial crash basis.

7.1 Normalized Covering Vectors

\When Lemke's algorithm is applied to the linear program

minimize cTx

subject to Ax > b, (7.1.1)

.r> 0,

an extra variable 0 is adjoined to form the set of equations

(b)+(f) +( A)(y)(u) (7.1.2a)

uTY + t, TX = 0, (7.1.2b)

u, v, x, Y > 0. (7.1.2c)

For the self-dual algorithm to converge, the initial values of f and d must be chosen so
that the parametric primal basic variables and parametric reduced costs are nonnegative.
Typically, f and d are chosen so that

f 1, if b, > 0; for Z = 1 M, (7.1.3)

f 0, if b,<0 f 1

anri

d) ifc)>0 for j = .. n. (7.1.4)

In a study of the general linear complementarity problem, Eaves (1971) suggested varying
the choice of the initial values of f and d when using Lemke's algorithm. The same sugges-
tion, of course, is applicable to the self-dual algorithm. Krueger (1986) also investigated
the effects of varying the initial values of f and d. For the self-dual algorithm, f and d
can be chosen so that the various ratio tests remain unaffected if the rows or columns of
the original linear program are rescaled. If the original problem is not scaled first, this will
only be in the sense that the initial value of 0 is unit-free, i.e., a change in units of any
primal or dual variable will not change the initial value of 0 with respect to this covering
vector. If the original problem has been scaled first and then f and d chosen so that 9 is
to be initially scale-free, it will be so for all subsequent changes in 0.

Because an initial crash basis cal contain both primal decision variables x,, 3=

.. ......n. and slack variables u,, 1. rn, it is important to treat each of them separately

I

-. . . . . .. . . ..- .. .. - N . . ...'"~. .. ,.



42 Section 7. Variants of the Self-Dual Parametric Algorithm

when developing a unit-free covering vector. Furthermore, the value dj for the reduced
cost 4) will depend upon whether its complementary variable was a decision variable or a
slack varipble.

Let A = [-A I], 6T= (cT 0) E R"'", and relabel the m slack variables u, to be Zm+,
so that the linear program is now

minimize 6Tz

subject to Ax = -b(7.1.5)
X >0.

Let the initial crash basis be represented by an index set B. Suppose h decision variables
Zj,lI < k < h, 1 < i _ n, andgslackvariables , h+1 k<m, n+l j<k n+m,
(m = g + h) are the initial basic variables and Bk = k so that the first h basic variables
are decision variables. Let N index the n nonbasic variables. B = Ai. is nonsingular, and
therefore the linear program (7.1.5) can be rewritten

minimize (cT_ cTB-I1A)z

subject to Ix, + B-1 A.grxg = -B-'b, (7.1.6)
X >0.

Writing " = x€, J - (J - cT.B- A.), A - -B-Ag, and b = B-1 b, this linear
program can be rewritten as

minimize Ji

subject to Ai > b (7.1.7)
:i> 0.

Lemke's method is initialized for (7.1.7) by writing

Z d + A 0 = i '".

f4 T + Tf 0, (7.1.8b)
fl, 1, f, 0, (7.1.8c)-

where = (y v)v, fi = xa, and i = (y v)g(. The initial ratio test in Lemke's method for
(7.1.8) is

-min min m d (719)
M, f >.. 0 m in, n.. dj' > 0 7. .9

If a row or column of the original linear program (7.1.1) is multiplied by a scalar a, then
the ratio test (7.1.9) will be unit-free if f and d are chosen so that the blocking variable
in (7.1.9) is independent of the scaling. Hence, f and d will depend on the original values
of A, b, and c.

:1
* - ~~. . . -- ~-~~. . .



Section 7.1 Normalzed Covering Vectors 43

First, consider when a column of the original problem (7.1.1) is scaled by a value a.
Let zx be a variable in the initial crash basis. Then the initial value of X, = -b 1 . Suppose
that -bi < 0 so that z1 is initially infeasible. If the column

A.,) (7.1.10)

is multiplied by a value a, so that

= i (7.1.11)
A.' A.l

then the value of z in the scaled problem is z = -bl/a. We desire that the ratio

-'7 (7.1.12)

be unaffected by this scaling. If

c' A")l~ (7.1-13)

then
fi - -. 1 ( -b A ) 11 1 1( , A 1- 1

Hence, the ratio (7.1.12) is not affected by any scaling of the column for xl.
Suppose x, is initially nonbasic at its lower bound, and the initial value of the dual

variable v1 = Z, < 0. If a scaling as in (7.1.11) is done, then the initial value of i'l is
ii = ao. In the initial ratio test for Lemke's method, the ratio

Zi (7.1.15)

is computed. If d= I( c, A. ) l, (7.1.16)

then the ratio (7.1.15) is

A? i 1 j T (7.1.17)
d, all(ci AT)II-i (ci A.) 71

Hence, the ratio (7.1.15) is unaffected by any scaling of the column for xi.
When a row of the original problem is scaled, the values of the slack variables and

their reduced costs are affected. Suppose the first row (A 1. b, ) is scaled by a value a so
that

(A',. b', )= (A,, bi). (7.1.18)



44 Section 7. Variants of the Self-Dual Parametric Algorithm

Suppose ul = b, - A,.z is in the initial crash basis and that ul = ij,+1 < 0. If the above
scaling is done, then u' = aul. We desire that the ratio test

4 +• - - (7.1.19)
4i,+1

is independent of any scaling on the first row. If

fh+, = 1( A'. b ) 1, (7.1.20)

then the ratio (7.1.19) is

fA+1 all( A,. b, )11 II (A,. bl )11 (7.1.21)

Hence, this choice of f,+. causes the ratio (7.1.19) to be unit-free.
Now suppose that ul is initially nonbasic at a value of ul = 0 and that its correspond-

ing dual variable i is negative. l = Eh+l = -c.B-'el, where el is the first column of
the identity matrix. When the first row of A is scaled as in equation (7.1.18), the first
column of B is divided by o. Hence, a scaling causes = a/. We desire that the
ratio

A(7.1.22)
di

be independent of scaling. If we set

d II(A'. b' )l-', (7.1.23)

then the ratio (7.1.22) is

14 _ Ch~l h+l
', ch+,ch+,(7.1.24)

d, -II(A l. b 1 ) I' I (A,. b,)i - '

which is seen to be independent of any scaling of the first row.
In summary, the value of f, will depend on whether the Zth basic variable is a decision

variable x,, 1 <j < n, or a slack variable x, n +1 < j < m + n. This distinction is
determined by the value of B, = j. Hence, if x., < 0,

Il(c, A T)1I- 1 if 3 =5,, 1<j < n(
1 lI(Ak. bk)It ifk= ,-n, I <k m rn

(f,=0 if x,, is feasible). The value of d, is determined for c., < 0 by

d _{llc) AT) I fI if < j n (..
SII(A. bk)11' ifk=j-n, <k<m

- " ". " " ' . ". . . "-*% " " " "



Section 7.1 Normalized Covering Vectors 45

(d] = 0 if ej > 0). These values can be computed prior to the first iteration of the self-dual
algorithm.

The computational results for the self-dual method with a normalized covering vector
are presented in Tables 7.1.1-7.1.4. The columns for primal and dual iterations correspond
to the number of primal simplex and dual simplex iterations, respectively, done by the self-
dual algorithm using that covering vector.

Table 7.1.5 summarizes the effects of scaling for the self-dual algorithm with a nor-
malized covering vector. It seems that the choice of scaling or the starting basis has little
effect on this variant.

Table 7.1.6 compares the self-dual algorithm with a normalized covering vector (NCV)
to the two-phase algorithm. It seems that this variant offers an improvement over the two-
phase procedure for only a few of the problems. The CPU time improvements occurred
only when the problem was unscaled and started from the UB basis.

Table 7.1.7 compares the effects of using the normalized covering vector versus using
the default vector in the self-dual algorithm. The results are mixed, and there does not
seem to be a clear advantage to using either covering vector. It is interesting to note
the results for when the problems were scaled and started from the SB basis. Here, the
iteration counts were higher when using the normalized covering vector, but the CPU time
was less in three of the cases. This is because for those three problems, less dual simplex
iterations were done when the normalized covering vector was used, while the total number
of iterations increased. This indicates the sensitivity of the self-dual algorithms (and its
variants) to fluctuations in the number of primal and dual simplex iterations and their
effects on the total CPU time.

I!



46 Section 7. Variants of the Self-Dual Parametric Algorithm

Problem Nam Primal Du TOW CPU Time
Iterations Iterations Iterations (Seconds)

AIRO 4 62
ADLXATE 46 70 116 14.39
SHARE2B 91 81 172 25.37
SHARE1B 105 - 155 260 52.3-7

BEACONFD 36 12 48 11.92
ISRAEL 176 33 209 54.16
BRANDY 135 209 344---11W.08

E226 268 177 445 145.49
CAPRI 31 190 221 62.50
BANDM 270 268 538 212.70
STAIR 184 287 471 288.15
ETAMACRO 668 256 924 400.67

Table 7.1.1 Self-Dual Algorithm Normalized Variant-Unscaled with UB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 60
ADLITLE 51 42 93 11.36
SHARE2B 71 90 161 23.27
SHAREIB 206 178 384 74.34
BEACONFD 29 12 41 10.17
ISRAEL 305 76 381 93.66
BRANDY 213 -345 558 161.11

E226 238 154 392 123.01
CAPRI 87 181 268 78.32
BANDM 253 199 452 175.63

STAIR 233 220 453 280.44
ETAMACRO 504 162 666 279.46

Table 7.1.2 Self-Dual Algorithm Normalized Variant-Scaled with UB Basis

is



Section 7.1 Normalized Covering Vectors 47

Problem Nam Primal -Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 26065

ADLIT.= 51 66 117 13.88
SHARE2B 53 82 135 19.23
SHARE1B 112 172 284 54.16
BEACONFD 33 6 39 10.05
ISRAEL 209 122 331 82.38
BRANDY 114 215 329 98.42
E226 324 195 519 171.33
CAPRI 57 195 252 71.79
BANDM 262 255 517 201.80
STAIR 307 217 524 298.66
ETAMACRO 437 228 665 289.38

Table 7.1.3 Self-Dual Algorithm Normalized Variant-Unscaled with SB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 26 0.62
ADL1ITLE 58 54 112 13.65
SHARE2B 70 101 171 24.56
SHAREIB 132 154 2 55.40
BEACONFD 36 43 79 20.24
ISRAEL 175 100 275 66.91
BRANDY 226 346 99.10
E226 280 176 456 145.00
C, ,RI 45 181 226 63.37
BANDM 278 -M1 539 203.64
STAIR 184 186 370 220.98
ETAMACRO 444 356 800 352.97

Table 7.1.4 Self-Dual Algorithm Normalized Variant-Scaled with SB Basis



48 Section 7. Variants of the Self-Dual Parametric Algorithm

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

UB Unsealed 4W-7L 4W-7L 7W-4
Scaled '7W -4L 4W-6L 6W3T

SB Unsealed 7W-4L 6W-4 6W-5L
Scaled 4W-7L 5- 6L 5WT- 6 _L

Table 7.1.5 Self-Dual Algorithm Normalized Variant-
Comparison of Scaling versus Nonscaling

Starting Basis UB SB
Scaling Status Unscaled Scalealed Scaled

Self-Dual (NCV) CPU 3W-9L OW- 12L -12L 0W- IL
versus Two-Phase Iterations 3W-SL 2W-9L W-7L 5W-6L

Table 7.1.6 Self-Dual Algorithm Normalized Variant-
Comparison to Two-Phase Algorithm

Starting Basis UB SB
Scaling Status Unscaled Scaled nscaled Scaled

Self-Dual (NCV) I CPU 5W-7L 6W-6L 6W-5L 7W-4L
versus Self-Dual Iterations 5W-6L 4W-7L 6W-5L 4W-7L

Table 7.1.7 Self-Dual Algorithm Normalized Variant-
Comparison to Self-Dual Algorithm

7.2 Fixed Variables

Some general linear programs have constraints of the form

aTx. = b,. (7.2.1)

Whei, such a linear program is converted to MINOS standard form, the slack variable x,,+,
corresponding to this constraint will have equal lower and upper bounds. Any variable x.
with equal lower and upper bounds is known as a fixed variable. In the dual of the linear
program, the complement of a fixed variable is free; in other words, the complementary
variable has infinite lower and upper bounds. Hence, once a fixed variable becomes nonbasic
in the course of executing any variant of the simplex method, that variable will never
become basic at a later iteration.

Fixed variables can appear in the initial crash basis, because they must be included
in order to maintain the lower triangularity of the crash basis. If the fixed variable is not
at its bound, then Phase I will consider the fixed variable to be infeasible and include the
variable in the Phase I objective. Eventually, this will cause the fixed variable to attain

mm u bra I l l IIk 11 Ill 4 1 1



Section 7.2 Fixed Variables 49

its bound. At that point, the variable will exit the basis if the equation (7.2.1) is not
redundant given the other linear equations in the linear program. There seems to be an
intuitive advantage to having as few fixed variables in the set of basic variables as possible.
It is interesting to note that the two-phase simplex method causes a fixed variable to exit
the basis by choosing incoming columns before choosing exiting columns in each iteration.

The self-dual algorithm has the property that it can choose exiting columns before
incoming columns. The idea behind this variant of the self-dual algorithm is to cause as
many fixed variables as possible to exit the basis before proceeding with the usual self-dual
method. Because of the freedom allowed in the initial choice of f and d, f can be chosen
so that some fixed variable "wins" the initial ratio test in the self-dual algorithm. The
dual-simplex method is invoked and that fixed variable exits the set of basic variables,
never to reenter. The method can then be restarted by choosing a new f and d so that
another fixed variable will now exit the basis. If all basic fixed variables are at their bounds
or are nonbasic, then the usual self-dual algorithm is invoked. The algorithm will converge
since either a fixed variable exits the basis on an iteration or 9 is reduced.

The initial values of f and d are chosen in the default way and the new value of 0 is
computed. The fixed variable that is furthest from its bound is then chosen as the variable
to become nonbasic. For example, suppose x, is the ith basic variable and is designated

" as the most infeasible fixed variable, and that the current value of x, > 1i. Then f, is
modified so that

f _ -i - l , (7.2.2)

which would force rj to be the exiting variable if the initial ratio test in the self-dual
algorithm were recomputed. After xj exits the basis, f and d are reset to their initial
values depending upon the new values of the basic variables x. and reduced costs e.

The fixed-variable variant of the self-dual algorithm can be used with the default initial
choices of f and d (equations (7.1.3) and (7.1.4)) or with the normalized covering vector
considered in the previous section. The computational results with the default covering
vector are shown in Tables 7.2.1-7.2.4, while the results with the normalized covering
vector are shown in Tables 7.2.5-7.2.8.

Tables 7.2.9-7.2.10 summarize the effects of scaling on the fixed-variable variant of the
self-dual algorithm with both covering vectors. The results are varied enough to suggest
no trends relative to this algorithm for scaling or the choice of basis.

Tables 7.2.11-7.2.12 compare the fixed-variable (FV) variant of the self-dual algorithm
to the two-phase algorithm for the default covering vector and the normalized covering
vector (NCV). For both covering vectors, the number of iterations decreased for some of
tlhc problems (especially when the problem was unscaled and using the UB basis), but
improvements in CPU time occurred for only a few problems.

Tables 7.2.13-7.2.14 compares the fixed-variable (FV) variant of the self-dual algo-
rithmn to the regular self-dual algorithm for each of the covering vectors. This allows one
to see if eliminating the fixed variables first yields any improvements for the self-dual al-

orit hni. There seems to be no clear advantage or clear disadvantage to using this variant
of th' self-dual algorithm.

• . -. .., . .. ., . .. ... ... -., .. . . , . ,,j .. .. , . .; . . -, . .. ... .. , . ,. , . . .. .



50 Section 7. Variants of the Self-Dual Parametric Algorithm

Problem Name Primal Dual Total CPU Time

Iterations Iterations Iterations (Seconds)AFRO4 260.62

ADLrE 23 79 102 12.39
SHARE2B 44 63 107 15.85
SHARE1B 127 203 330 70.02"

BEACONFD 27 10 37 9.46
ISRAEL 240 82 322 82.35
BRANDY 208 250 458 146.02
E226 286 148 434 147.25
CAPRI 48 176 224 64.78
BANDM 292 233 525 213.84
STAIR 246 146 392 233.80
ETAMACRO 407 254 661 299.10

Table 7.2.1 Self-Dual Algorithm Fixed Variable Variant-Unscaled with UB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 6 0.62--"
ADLrITLE 28 42 70 8.25
SHARE2B 67 79 146 20.95
SHARE1B 148 135 283 56.03
BEACONFD 28 23 51 13.62
ISRAEL 177 60 237 61.32
BRANDY 214 302 516 161.35
E226 264 140 404 133.92
CAPRI 39 252 291 83.85
BANDM 293 177 470 180.18
STAIR 149 141 290 189.93
ETAMACRO 561 364 925 412.55

Table 7.2.2 Self-Dual Algorithm Fixed Variable Variant-Scaled with UB Basis

- . -- - . . . * 4~*.

444.~*~* . . . . ... .. 4

,. . - 4, '- -. - -. '1-



Section 7.2 Fixed Variables 51

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 6 0.61
ADLI=E 44 84 128 15.47
SHARE2B 53 59 112 16.02
SHAREB 136 150 286 60.61
BEACONFD 35 8 43 10.73
ISRAEL 210 21 231 60.16
BRANDY 213 161 374 121.40
E226 265 185 450 151.29
CAPRI 58 244 302 90.02
BANDM 296 278 574 236.15
STAIR 323 151 474 289.22
ETAMACRO 414 292 706 325.61

Table 7.2.3 Self-Dual Algorithm Fixed Variable Variant-Unscaled with SB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 2 60
ADLITLE 51 59 110 12.18
SHARE2B 91 81 172 24.95
SHAREIB 151 156 307 59.23
BEACONFD 34 24 58 15.36
ISRAEL 176 33 209 55.79
BRANDY 157 174 331 104.48
E226 364 206 570 184.81
CAPRI 47 249 296 89.98
BANDM 249 295 544 216.29
STAIR 158 173 331 203.05
ETAMACRO 309 162 471 205.79

Table 7.2.4 Self-Dual Algorithm Fixed Variable Variant-Scaled with SB Basis

-s.* .*.*-,.*.*..**.- - ..



52 Section 7. Variants of the Self-Dual Parametric Algorithm

Problem Name Primal Dual Total CPU Time

Iterations Iterations Iterations (Seconds)
AFIRO 4 2 60
ADIrITLE 49 52 101 11.99
SHARE2B 60 81 141 20.19
SHARE1B 89 123 212 43.53
BEACONFD 28 10 38 9.87
ISRAEL 265 93 358 87.80
BRANDY 200 320 520 161.34
E226 303 143 446 149.89
CAPRI 71 144 215 61.64
BANDM 284 303 587 232.33
STAIR 249 148 397 230.72
ETAMACRO 299 204 503 227.17

Table 7.2.5 Self-Dual Algorithm Fixed Variable Normalized-Unscaled with UB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFIRO 4 - 2 - 6 0
ADL1TrLE 48 44 92 11.26
SHARE2B 71 90 161 23.44
SHARE1 191 172 363 74.43
BEACONFD 29 10 39 9.95
ISRAEL 305 76 381 94.73
BRANDY 206 249 455 137.77
E226 219 150 369 116.69
CAPRI 72 209 281 82.75
BANDM 248 219 467 179.08
STAIR 285 170 455 287.49
ETAMACRO 358 205 563 248.36

Table 7.2.6 Self-Dual Algorithm Fixed Variable Normalized -Scaled with UB Basis

• "' _ , ". ", " " . -, ' ' ' ' ', . - "' - '. " " - , ." € -' ' , " , "" ", '" - . , " - ' .- . " .



Section 7.2 Fixed Variables 53

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFRO 4 T 0.65
ADLr .E 54 47 101 10.17
SHARE2B 53 82 135 19.52
SHAREIB 80 113 -193 40.4/

BEACONFD 32 5 37 8.16
ISRAEL 209 122 331 80.80
BRANDY 185 230 4135 130.76'

E226 321 213 534 173.90
CAPRI 49 179 228 66.72
BANDM 308 232 540 216.70
STAIR 305 121 426 254.39
ETAMACRO 899 388 1287 593.00

Table 7.2.7 Self-Dual Algorithm Fixed Variable Normalized-Unscaled with SB Basis

Problem Name Primal Dual Total CPU Time
Iterations Iterations Iterations (Seconds)

AFRO 4 2 60.64"
ADLITILE 52 54 106 12.74
SHARE2B 70 101 171 24.34
SHAREIB 124 223 347 71.47
BEACONFD 41 22 63 16.61
ISRAEL 175 100 275 70.12
BRANDY 142 249 391 119.78
E226 283 170 453 143.52
CAPRI 61 207 268 80.18
BANDM 321 336 657 154 85
STAIR 247 153 400 254.91
EFAMACRO 321 206 527 233.27

I~l i,> '2 '- S'lf )ual Alg(,ritN r lY ixed \arilE. ,Nrtiia ,,e , alSvd k th SBI ltv. I



54 Section 7. Variants of the Self-Dual Parametric Algorithm

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

U B Unscaled 5W-6L 8W-3L 5W-5L
Scaled 6W-5L 6W-5L 8W-3L

SB Unscaled I3W-8L 5W-6L I3W _____-7L
_ Scaled 5W-5L 3W-8L 7W-3L

Table 7.2.9 Self-Dual Algorithm Fixed Variable Variant-
Comparison of Scaling versus Nonscaling

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

UB Unscaled 7W-4L 4W-6L 8W-2L
Scaled 4W-7L 3W-7L 5W-6L

SB Unscaled 6W-4L 7W-3L 6W-4L
Scaled 2W-8L 6W-5L 4W-6L

Table 7.2.10 Self-Dual Algorithm Fixed Variable Normalized-
Comparison of Scaling versus Nonscaling

-Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

Self-Dual (Fixed Vars)I CPU O-10L -1L OW-12L 2W-1OLversus Tvo-Phase Iterations -3L 4W-7L 4W-7L 4W-7L

Table 7.2.11 Self-Dual Algorithm Fixed Variable Variant -
Comparison to Two-Phase Algorithm

Starting Basis UB SB
Scaling Status Unscaled Scaled Unscaled Scaled

Self-Dual (FV) (NCV)I CPU 4W-8L 1W-I IL 3W-gL lW-111
versus Two-Phase Iterations 6W-4L 2W-8L 5W-6L 2W-91.

Iable 7 2,12 Self l)lial Alg aitlmh i h\-1, \arihlc Nrmna led
( urti arli. ,ri hi,, " .l P ,,, :Xti,, .} 'rit Iif

I.



Section 7.2 Fixed Variables 55

Starting Basis UB SB
Scaling Status Unscaled Scaled nscaled Scaled

Self-Dual (Fix a rs) CPU 6W-6L 6W-5L 6W-6L 6W-6L
versus Self-Dual Iterations 5W-4L 5W-4L 4W-5L 4W-5L

Table 7.2.13 Self-Dual Algorithm Fixed Variable Variant-
Comparison to Self-Dual Algorithm

Starting Basis IUB SB
Scaling Status jUnscaled Scaled Unscaled -Scaled

Self-Dual (FV) (NCV)j CPU 7W-5L 5W-7L 6W-51 5W-7L
vs. Self-Dual (NCV) Iterations 5W-L 7 - 5W-4L 4W-5L

Table 7.2.14 Self-Dual Algorithm Fixed Variable Normalized-
Comparison to Normalized Self-Dual Algorithm

* - .°.

*..., . . .. . . . . . . .. .-



56 Section 8. Summary and Comparisons of Results

Section 8. Summary and Comparisons of Results

In this section, the computational results are used to compare all the algorithms
against each other. Although one would expect that one of the many possible composite
algorithms would turn out to be a clear winner, the evidence suggests that no algorithm is
best for all problems. The two-phase and self-dual algorithms were used for a sensitivity
analysis, and the evidence indicates that the choice of the best algorithm is not clear even
when the problems have the same sparsity structure. In the last section, some suggestions
for further research are offered.

8.1 Comparing Many Algorithms
In the course of comparing two different simplex variants on a specific linear program, two
computer runs are made. It is important to be conscious of any differences between the two
runs that may affect the interpretation of the results of these runs. The major differences
between two such runs will be in the choice of scaling and the choice of the initial basis. In
the earlier sections, the effects of these choices for each algorithm were compared, and it
seemed that choosing the SCALE option of MINOS or either starting crash basis had little
effect on the results. In this type of comparison, the algorithm chosen was a fixed control
and the choice of scaling and the starting bases were varied. Tables were also presented
that compared each composite algorithm to the two-phase algorithm. Here, the choices of
scaling and the starting basis were fixed when two algorithms were compared. From these
pairwise comparisons, one can measure how often one algorithm was better than another.
However, they offer no measure as to how much better that algorithm was.

A scoring system can be used to measure the relative speeds of the different composite
algorithms to the two-phase algorithm. We are interested in comparing the relative de-
crease or increase in the iteration counts and CPU time, which we will call a performance
measure. Let q. be the value of a performance measure for Algorithm a (a = 0, 1) on
some problem. Suppose that Algorithm 0 is the two-phase algorithm, whose performance
measures will be used as the standard for comparing all of the other algorithms. Then the
per-formance factor pi for Algorithm i is defined as

Pi = 100(L) (.11
qo

Hence, if the performance measure being used was CPU time, then a value p, = 120
would mean that Algorithm 1 was 20 percent slower than the two-phase algorithm, while.
similarly, a value pi = 70 would mean that Algorithm 1 was 30 percent faster than the
two-phase algorithm. It should be noted that the performance factors for the two-phase
algorithm will always be 100.

Performance factors can be computed by comparing the runs of two algorithms- on
the same problem using the same scaling option and the same starting basis. lience, for
each starting basis, scaling option, and algorithm, 12 performance factors are computed (I
for each problem). The minimum, maximum, and average values of these 12 performance
factors are then computed. In the tables that follow, the performance factors are rounded
to the nearest integer. Performance factors are computed for iteration counts and CPT'
time.

Table 8.1.1 presents the performance factors for iterations counts. Each algorithm has
at least one problem for which it gives a 24 percent improvement in the number of iterations
as compared to the two-phase algorithm. The average number of iterations was ill most



Section 8.1 Comparing Many Algorithms 57

Scaling Starting Iterations Perf. Factors
Algorithm Status Basis Min Max Mean

Unscaled UB 10 1 10
Two-Phase SB 100 100 100

ScKaled UB 100 100 100
SB 100 100 100

Unscaled UB -- 114 9
Weighted Objective SB 81 122 97

Scaled uB 93 105 100
SB 76 120 98

Unscaled UB 7 197 125
Markowitz Criterion SB 92 222 144

Scaled UB 62 577 161
SB 69 475 150

Unscaled -UB- 621 171 717-
Self-Dual SB 58 137 105

Scaled UB 78 170 111
SB 91 142 107 "

Unscaled UB 74 192 109-
Self-Dual SB 70 153 107
(Normalized Covering Scaled UB 81 153 118
Vector) SB 90 203 113

Unscaled UB 76 157 98
Self-Dual SB 74 130 105
(Fixed Variables) Scaled UB 78 13 108

SB 53 149 107
Unscaled U B -74 178 99

Self-Dual SB 63 153 109
(Normalized Covering Scaled UB 74 149 114
Vector) (Fixed Vars.) SB 59 162 114

Fable k.1 I Performance Factors for Iterat ion ( 'ouls

Case(' ('0utiparable to that oft lie two 1)liase alotit lill. .tu't of the algorit Illis exhibit a wide
rang, off performare factur f,,r It(erat 1,,cm (u irit s a i)iitar,'d to tI li to )hase1 algoril hin. r

lahle ',1 .2 )reseints t lie [ rf riian( v fa, tor, f,r (ti T Ite (tim O ce agaill. all t he algo
rit hriis had at least olle Iprhle, i t hac had 1'. I , . ('! 1 t ,I tha he tI II , ha.se , alg(ritI III
Overll. ,orily th1v welg)ted oj) tlr Alvi,ri}li ',.:i. 1, *. ,, ei tlv , intityei ' (1.
tho ,verai the self Iuial alvrit hiTi ,ll a i t. it-t i- , to I()l,'t t .,1ower thai the

lca., alv c,,r1 i-0

- ft" - *. . .. ft . . . . . .



58 Section 8. Summary and Comparisons of Results

Scaling Starting CPU Time Perf. Factors
Algorithm Status Basis Min Max Mean

Unscale UB1 - --I 10Two-Phase SB 100 100 100
Unscaled UB 100 100iW 100

SB 100 100 100
Scaled UB 84 117 99

Weighted Objective SB 85 128 101

Unscaled UB 9 111 104
SB 81 126 100

Scaled UB 81 217 143
Markowitz Criterion SB 105 259 169

Unscaled UB 74 56 180
SB 78 516 172

Scaled UB 78 220 133
Self-Dual SB 75 173 136

Unscaled UB 98 188 139
SB 111 177 135

Scaled UB 94 246 136
Self-Dual SB 106 185 134
(Normalized Covering Unscaled UB 104 201 146
Vector) SB 105 240 140

Scaled UB 86 214 126
Self-Dual SB 102 177 137
(Fixed Variables) Unscaled UB 98 18 139

SB 75 186 136
Scaled UB 84 237 124

Self-Dual SB 85 216 139

(Normalized Covering nscaled UB 98 202 144
Vector) (Fixed Vars.) SB 85 197 144

Table 8.1.2 Performance Factors for CPU Times

forms better than any other algorithm. For each algorithm, there is at least one problem
for which that algorithm is best. Given a problem, there seems to be no rule that allowsone to choose an algorithm which will perform best on that problem.

". .. ... j .. 1 . A . . . . ..



Section 8.2 Sensitivity Analysis 59

8.2 Sensitivity Analysis

Users of commercia! linear programming systems frequently solve a particular linear pro-
gram and then solve some perturbation of that problem. This perturbation usually is of
the same structure as the original problem, and may only differ in the elements of A, b,
and c. It is often useful to solve such a perturbed problem by using an optimal basis of
the original problem as the starting basis for the new problem. Usually, only a few pivots
of the simplex method must be done to reach the optimal basis of the new problem.

A perturbation as described above can cause the original optimal basis to become
either primal infeasible, dual infeasible, or both. In the case of primal infeasibility, the
dual simplex method is usually used. In the case of dual infeasibility, Phase II of the
two-phase algorithm is used. When both the primal and dual problems are infeasible, the
two-phase algorithm is usually used. In such a case, however, the self-dual algorithm may
perform well, since only a few iterations may be needed.

In order to analyze the application of the self-dual algorithm for sensitivity analysis, it
is necessary to determine a "real-world" perturbation of a "real-world" problem. A random
perturbation of a problem would most likely destroy any degeneracies that were present.
Fortunately, the literature contains a good example of a "real-world" perturbation.

Manne (1973a) described the model DINAMICO in enough detail to allow the asso-
ciated linear program to be defined in a modeling language such as GAMS (Bisschop and
Meeraus, 1982). GAMS can be used to create an input file for MINOS to use to solve the
problem. This procedure was followed, and the optimal basis for the problem was saved.
The problem has 319 rows, 424 columns, and 4157 nonzeroes. Manne (1973b) (pg. 152)
later described different alternatives to the initial problem that can be solved. All the
alternatives described leave the sparsity structure of the matrix A unchanged, but change
only either the primal or dual infeasibility of the original problem, not both simultaneously.

Alternative cases 1 and 2 from Manne's paper vary the growth rate g used in the
model. Varying this rate changes the primal infeasibility of the optimal basis. Alternative
case 5 from Manne's paper makes the optimal basis dual infeasible. Both of these variations
were made simultaneously, and the growth rate g was varied from a value of 4 percent to
12 percent. The case g = .07 corresponds to the optimal basis. Note that when g = .06,
the optimal basis for the case g = .07 was the same, and hence the only computations that
MINOS performed were to determine that the initial basis was optimal without performing
an• pivots.

Growth Rate Two-Phase Self-Dual
g Itns CPU Itns CPU
0.04 41 31.48 39 33.71
0.05 45 29 30 7.15
0.06 6- 12.83 6 13.72
0.08 50 32.83 12 16.52
0.09 115 76.19 -17 100.18
0.10 224 1T .74 18 5 139.09
0.11 115 66.84 200 144.03
0.12 124 80.58 181 130.76

. ..' .', , .. .- ,-.% . " % .'. ..',.- ,- ,- . ., -- , ..- ,..,- . - , . - . . . . . .... ,-.. . ..-.. .-. ,.._... . . .,. .,-. .-.... ....



60 Section 8. Summary and Comparisons of Results

Table 8.2.1 shows the results for the two-phase algorithm and the self-dual algorithm
with the default covering vector. Note that the self-dual algorithm had competitive itera-
tion counts for most of thie cases.

C 160.00-
p 140.00-
U 120.00-

S 100.00
e 80.00

C 60.00
* 0

n 40.00
d 20.00

s 0.00
0.04 0.05 0.06 0.08 0.09 0.10 0.11 0.12

Growth Rate g

4 Figure 8.2.2 CPU Times for Sensitivity Analysis

It is interesting to compare the CPU time results using a graph as in Figure 8.2.2.
* The better CPU times are indicated by smaller bars. The self-dual algorithm outperforms

the two-phase algorithm when g = .05 and g = .08. It is interesting to note the difference
in performance for g = .10 as compared to g = .09, .11, or .12. It seems that the self-dual

* algorithm is better for small perturbations; conversely, the two-phase algorithm is better
for large perturbations. However, it should be noted that the amount of CPU time did
not increase monotonically as g increased. This suggests that it is difficult to predict the

* performance of either algorithm for arbitrary values of g.
All these problems were run from the same crash basis. The problems have the

same structure for A, but approximately 120 of the nonzeros differ in value. These results
suggest again that no one algorithm will perform consistently better than another on every
problem, even when the problems have the samne structure, i.e., problems which have the
same pattern of nonzero data in A, but different values for some of those nonzeroes.



Section 8.4. Acknowledgements 61

8.3 Summary and Further Research

The computational results contained in this study exhibit the sensitivity of the simplex
method to different schemes for choosing the incoming and outgoing variables. Intuitively,
one would expect that a composite algorithm would perform better than the two-phase
algorithm, but only the weighted objective algorithm was consistently competitive. The
two-phase algorithm and weighted objective methud have a good average performance.
Other algorithms seem to perform better than the two-phase algorithm on a few problems,
.ndicating that no rule exists that allows one to choose the best method for a particular
Iproblem. The drawback of most of these alternative methods is that they require more

work per iteration than the two-phase algorithm to choose s and r. They can only be
faster than the two-phase algorithm if the number of iterations is significantly lowered (30
percent or more). Probably the best way to choose a variant of the simplex method is to
use the two-phase algorithm first. If it performs poorly, then trying another variant of the
simplex method may be in order. If n is much larger than im, the two-phase algorithm,
weighted objective method, and the Markowitz criterion can each be used with partial
pricing.

Some open questions that remain are:
1. What happens to a class of problems that are related in structure, but grow in size?
2. Do there exist other variants of the simplex method that will consistently do better

than the two-phase algorithm?
3. Are there variants that have advantages over others in degenerate situations?
4. Can the methods of artificial intelligence be used to analyze a problem in advance,

and then dynamically vary the choice of variant of the simplex method to use as the
computation progresses?

5. Can one develop a matrix generator for creating problems that are in some sense ran-
dom and yet representative of the variety of structures found in real-world problems?

8.4. Acknowledgements
I would like to thank George B. Dantzig, Richard WV. Cottle, Michael A. Saunders and
B. Curtis Eaves for their helpful insights during the course of this study. I would also
like to thank the Department of Operations Research for allowing me to use their DEC
VaxStation 11 and Macintosh computers for this work.

This material is based iipon work supported under a National Science Foundation
Graduate Fellowship. Any opinions, findings, concl-zions or recommendations expressed
in this publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.



62 Section 9 Bibl~igrapy

62 Section 9. Bibliography

Section 9. Bibliography.'

Aho, A.V., Hopcroft, J.E., and Uliman,J.D. (1974). The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Company, Menlo Park, California.

Bisschop, J. and Meeraus, A. (1982). On the development of a General Algebraic Modeling ,S.

System in a strategic planning environment, Mathematical Programming Study 20,
pp. 1-29.

Brad,. Stephen (1986). Private Communication.

Charnes, A., Cooper, W.W., and Henderson, A. (1953). An Introduction to Linear Pro-
gramming, John Wiley & Sons, New York.

Cottle, R.W. (1972). Monotone solutions of the parametric linear complementarity prob-
lem, Mathematical Programming 3, 2, pp. 210-224.

Dantzig, G.B. (1951). "Maximization of a Linear Function of Variables Subject to Linear
Inequalities," in Activity Analysis of Production and Allocation (T.C. Koopmans,
ed.), John Wiley & Sons, New York.

Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey.

Dantzig, G.B. (1987). "Origins of the simplex method," in Proceedings of the ACM confer-
ence on the History of Scientific and Numeric Computation, May 13-15, 1987, Prince-
ton, New Jersey, to appear.

Eaves, B.C. (1971). The linear complementarity problem, Management Science 17, 9, pp.
612-634.

F(o.rer, R. (1982). Solving staircase linear programs by the simplex method, 1: Inversion,
Mathematical Programming 23, 3, pp. 274-313.

Gill, P.E., Murray, W., and Wright, M.H. (1981). Practical Optimization, Academic Press, .
San Francisco.

Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., and Wright, M.H. (1986). On pro-
jected Newton barrier methods for linear programming and an equivalence to Kar-
markar's projective method, Mathematical Programming 36, 2, pp. 183-209.

Greenberg, H.J. (1978). "Pivot selection tactics," in Design and Implementation of Opti-
mization Software (H.J. Greenberg, ed.), Sijthoff & Noordhoff, Alphen aan den Rijn,
The Netherlands, pp. 143-174.

Hadley, G. (1962). Linear Programming, Addison-Wesley Publishing Company, Inc., Palo
Alto, California.

Hoffman, A., Mannos, M., Soklowsky, D., and Wiegmann, N. (1953). Computational ex-
perience in solving linear programs, Journal of the Society of Industrial and Applied
Mathematics 1, pp. 17-33.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming, Combi-
natorica, 4, 4, pp. 373-395.

Krueger, F. (1986). d-arrangements and Random Polyhedra, Ph.D. Thesis, Department of
Operations Research, Stanford University. .

,S-

N-



Section 9 Bibliography 63

Kuhn, H. and Quandt, R. (1962). An experimental study of the simplex method, Symposia
in Applied Mathematics 15, American Mathematical Society, Providence, RI, pp. 107-
124.

Lemke, C.E. (1965). Bimatrix equilibrium points and mathematical programming, Man-
agement Science 11, pp. 681-689.

Lemke, C.E. (1970). "Recent results on complementarity problems," in Nonlinear Pro-
gramming (J.B. Rosen, O.L. Mangasarian, and K. Ritter, eds.), Academic Press, New
York, pp. 349-384.

Lustig, I.J. (1987). The equivalence of Dantzig's self-dual parametric algorithm for linear
programs to Lemke's algorithm for linear complementarity problems applied to linear
programs, Report SOL 87-4, Department of Operations Research, Stanford University,
CA.

Manne, A.S. (1973a). "DINAMICO, a dynamic multi-section multi-skill model," in Multi-
Level Planning: Case Studies in Mexico (L.M. Goreux and A.S. Manne, eds.), North-
Holland Publishing Company, Amsterdam, pp. 107-150.

Manne, A.S. (1973b). "Economic alternatives for Mexico: A Quantitative Analysis," in
Multi-Level Planning: Case Studies in Mexico (L.M. Goreux and A.S. Manne, eds.),
North-Holland Publishing Company, Amsterdam, pp. 151-172.

Mayberry, J. (1951). "A geometrical interpretation of the simplex method," in Symposium
on Linear Inequalities and Programming (A. Orden and L. Goldstein, eds.), Project
SCOOP, No. 10, Planning Research Division, Director of Management Analysis Ser-
vice, Comptroller, USAF, Washington, DC.

McCammon, S.R. (1970). On complementary pivoting, Ph.D. thesis, Department of Math-
ematics, Rensselaer Polytechnic Institute, Troy, NY.

Megiddo, N. (1983). Linear-time algorithms for linear programming in R' and related
problems, SIAM Journal of Computing, 12, 4, pp. 759-776.

NIPS III mathematical programming system: User manual (1975), Ketron, Inc., Arlington,
VA.

Murtagh, B. A. and Saunders, M. A. (1983). MINOS 5.0 user's guide, Report SOL 83-20,
Department of Operations Research, Stanford University, CA.

Nishiya. T. and Funabashi, N. (1984). A basis factorization method for multi-stage linear
programming problems with an application to optimal operation of an energy plant,
Working Paper, Systems Development Laboratory, Hitachi, Ltd..

Orden, A. (1951) "Application of the simplex method to a variety of matrix problems,"
in Symposium on Linear Inequalities and Programming (A. Orden and L. Goldstein,
eds.). Project SCOOP, No. 10, Planning Research Division, Director of Management
Analysis Service, Comptroller, USAF, Washington, DC.

Ilavindran, A. (1970). Computational aspects of Lemke's complementary algorithm applied
to linear programs, Opsearch, 7, 4, pp. 241-262.

Sharrir, 1. (1987). The efficiency of the simplex method: A survey, Management Science,
33, 3, pp. 301-334.

Wolfe, P. (1961). An extended composite algorithm for linear programming, Paper P-2373,
The Rand Corporation, July, 1961.

Wolfe, P. and Cutler, L. (1963). "Experiments in linear rogramming," in Recent Advances
in Mathematical Programming (R. Graves and I 'Volfe, eds.), McGraw-Hill, New
York. pp. 177-200.



UNCLASSIFIED
SECURITY CLASSI FICATION OF TOO$5 PAGE eW00001090

______________________________________ RED DhSTRUCnOUsREPORT DOCUMEKT.TIOH PAGE S r. Th COMPL o ni
1 M IUMR .Vr AC'ES"OSM REIPIENT CATALOO NUMUEN

SQL 87-8 4r A7- -.*7
4. TITLE (and bUM~j S. TYPE OF REPORT 6 PEROD COVERED

Comparisons of Composite Simplex Algorithms Technical Report
6. PERFORMING ORO. REPORT NUMUER

7. AUTHOR(q) D. CONT0RACT ON GRANT NuMER()

Irvin J. Lustig NO0014-85-K-0343

S. PERFORMING ORGANIZATION NAME AND ADDRESS IS. PIORAM ELr.MENT PROJECT, TASK
Department of Operations Research - SOL AREA I WORM UNIT NUMBERS

Stanford University NR-047-064
Stanford, CA 94305

It. S OFFICE MAKE AND ADDRESS It. REPORT CATE

O ~fe ofNaval Research - Dept. of the Navy June 1987
800 N. Quincy Street S NUMmER oF P&AS

Arlington, VA 22217 pp. 63

_14. MONITORING AGENCY NAME & AODRESS(I 4E1m m ceivwia Ofee) IS. SECURITY CLASS. (*I a.. t,.p.

UNCLASSIFIED

IS& DECt AIFICATION/DOWNGRADING

I. ISTRIOUTION STATEMENT (of &We Re" )

This document has been approved for public release and sale;
its distribution is unlimited.

I?. DISTRINUTION STATEMENT (of .0 abe0e ftad i ilen We dl lh mft fm Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Ceifasuem verse II 1140nemy - IandJ 1.y b0 mWo&Rn)

Composite Simplex Algorithm, Computational Comparisons,
Self-dual Parametric Algorithm, Weighted Objective Method,
Markowitz Criterion.

I0. ADSTNACT (Centbhw aft rfeve, side If neeeem awl Id=d& IV leek rmAW)

(Please see other side)

DO 1 F" 1473 EDITION OF I NOV 65 is OSOLET,

SECURITY CLASIFICATION OF THIS PAGE (ltm Dale 2 es0

- - ~*|



SMcmTY CLAGNIFCAN OF TNIe PAGR(MhM MI" I

Abstract

For almost forty years, the simplex method has been the method for
choice for solving linear programs. The method consists of first finding a
feasible solution to the problem (Phase I), followed by finding the optimum
(Phase II). Many algorithms have been proposed which try to combine the
processes embedded in the two-phase process. This study will compare the
merits of some of these composite algorithms.

Theoretical and computational aspects of tne Weighted Objective,
Self-Dual Parametric, and Markowitz Criteria algorithms are presented.
Different variants of the Self-Dual methods are discussed.

A large amount of computational experience for each algorithm is
presented. These results are used to compare the algorithm in various
ways. The implementatons of each algorithm are also discussed. One theme
that is present throughout all of the computational experience is that there
is no one algorithm which is the best algorithm for all problems.

-4'

SgCURI?! CL.AMICAY)O OF a PAGIL(he,W EuItOrgE

7!



w * w w -W w w w w .* w

*v .0. F. F .. ' .* ., - -

-~ P . 7


